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R E S E A R C H  A R T I C L E

There are a significant number of professions that fre-
quently require working long hours or late at night that 
can lead to remaining awake for extended periods of 

time, causing sleep deprivation. It is important to understand 
the exact effects that sleep deprivation can cause so that it may 
be possible to anticipate a person’s performance after a long 
shift, ameliorate decrements, and potentially prevent life threat-
ening errors. Performance can manifest in many different 
forms; one way to examine it is in the field of human-computer 
interaction (HCI). HCI is the primary mode from which 
humans perform many crucial tasks in many environments, 
regardless if it is on the ground, underwater, or up in the air.

In general, most computer input is done with three major 
tools: keyboard, touch screen, and mouse. However, interface 
interactions have expanded with mobile technologies and the 
widespread use of gyro sensors and accelerometers, which have 
added a new dimension for HCI in the form of tilt-based con-
trol. The implications of tilt as an input method are far reaching. 
Tilting goes well beyond the other control systems in that it 

allows for a complex input parameter in a three-dimensional 
space, which can be particularly useful for above-ground opera-
tions. Tilt devices can also be used in situations when the use of 
a computerized system is extremely advantageous, but there are 
physical limitations associated with the task that constrain the 
use of other devices. With the advancement of tilt-based inter-
action, it is becoming more important to characterize and 
quantify a person’s performance and accuracy using such an 
interface.

There are methods that start to model such behavior, such as 
cognitive architectures. One frequently used architecture that 
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can be used to model HCI tasks is EPIC.12 While models 
developed in this architecture provide significant insight, the 
accuracy of these can be improved because they are still missing 
many components, for example, those related to sleep depriva-
tion.9 In addition, even the proposed mathematical models 
used to alleviate these drawbacks are very general and may not 
encompass the necessary depth for reasonable insight. Thus, 
this study examines how wakefulness or acute sleep deprivation 
affects the performance of people using tilt-based devices 
through modeling and experimentation to evaluate the predic-
tive power of the models.

In general it has been established that sleep deprivation has 
the most significant effect on alertness and attention, frequently 
causing lapses or short periods of nonaction following a stimu-
lus.1,14,20 These types of lapses are particularly seen in psycho-
motor vigilance tasks, in which a person waits for a stimulus to 
respond. In addition, it has been shown that sleep deprivation 
can result in an overall slowing of responses in general.13 How-
ever, the slowing of cognitive processing has also been observed, 
independent of lapses.1 Beyond that, sleep deprivation also 
increases the rate at which people make errors of omission and 
commission, many of which are partly caused by failures in 
vigilant attention.1

With varied results in the literature regarding sleep depriva-
tion, there are three general views on the effects of sleep depri-
vation. The first is based on controlled attention and suggests 
that tasks that are cognitively highly demanding are unaffected 
by short sleep deprivation.13 It is also found that tasks that are 
more monotonous or less engaging are more affected by sleep 
deprivation as described by the controlled attention model.19 
Finally, a neuropsychological-based hypothesis describes sleep 
deprivation as causing lower activation in the prefrontal cortex 
region of the brain.4,13 This suggests that tasks that are ori-
ented toward the prefrontal cortex are more susceptible to sleep 
deprivation.7 Even with these hypotheses, many argue that 
sleep loss exerts a nonspecific effect on performance and most 
modeling efforts have been based on this idea.3,10,13

This study focuses on examining human movement with 
the control of interfaces for the goal of finding metrics that 
can describe, and consequently characterize, a person’s perfor-
mance on additional performance measures. To do this we uti-
lize Fitts’ Law, which describes a psychological model of human 
performance and has been used to provide information regard-
ing how the human psychomotor system processes targeting 
tasks.8,11

To increase the understanding of the relationship between 
sleep deprivation and human performance, some groups have 
chosen to simulate sleep deprivation tasks using computational 
cognitive modeling within a cognitive architecture.9 Unlike 
many standard mathematical modeling techniques, cognitive 
architectures act as a blueprint for cognition and focus on pre-
dicting human behavior during specific tasks.6 The architecture 
incorporates various basic information processing mechanisms 
predictably used by humans collected in the literature (e.g., 
memory retrieval, typing speed, saccadic velocity) and allows a 
computer to simulate tasks based on human abilities.12

One of the drawbacks of computation architectures is the 
lack of accurate ways for predicting the changes in the process-
ing mechanisms of cognitive models due to sleep deprivation.9 
Gunzelmann et al.9 have made an attempt at characterizing the 
effects of sleep deprivation within the Adaptive Control of 
Thought—Rational (ACT-R) cognitive architecture. The archi-
tecture adaptations consisted mainly of the manipulation of 
constants that influenced the information processing systems of 
the architecture based on the time an individual had spent con-
tinuously awake. The manipulation performed leads to a steady 
increase in errors of commission, median reaction time, and 
number of lapses as the simulated time awake increased during 
the studied tasks.

While this work was informative, cognitive architectures are 
constantly evolving and some of the variables used in the previ-
ous study are no longer part of the newer cognitive architec-
tures as they are updated and changed.5 Some of the variables 
no longer in use include quantitative “goal values” that influ-
ence the model’s choice in action, as well as preprogrammed 
probabilities of success for individual actions.9 Thus, there is a 
need to gain more information on how conditions, such as 
sleep deprivation, affect human performance to better incorpo-
rate the information into newer models. For this study, a cur-
rent model in the architecture is used as precursor to predict 
results so that they may be compared to the empirical data, and 
it can be determined if there are portions of the cognitive archi-
tecture that should be replaced in the future.

METHODS

Subjects
The experiment was conducted with the assistance of 10 stu-
dent volunteers from Worcester Polytechnic Institute. This 
research complied with the American Psychological Associa-
tion Code of Ethics and was approved by the Institutional 
Review Board at Worcester Polytechnic Institute. Informed 
consent was obtained from each subject. The population con-
sisted of five male and five female subjects between the ages of 
22 and 32, none of whom had extensive experience working 
with gyroscopic-based devices in a manner that used tilt type 
control. Subjects reported an average of 7.7 h (SD 5 0.72) of 
sleep each night for 7 nights prior to the start of the experiment. 
Subjects were compensated for their time.

Equipment
The experiment was performed using a Samsung Galaxy Tab 
10.1 running Google’s 4.1 (Jellybean) operating system. The task 
was done on a screen that was 14.23 cm by 21.35 cm (800 px by 
1200 px) using a ball that was 0.36 cm (25 px). The software was 
developed in Java using the Android SDK and tilt control was 
implemented using the device’s built in gyro sensor. Pitch and roll 
values were converted to tilt magnitude and direction. The task 
implemented in the software allowed a user to tilt the device to 
control a circle that that was shown on screen. The goal of each 
individual task trial was to move a ball (represented by a small 
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circle) to a target (represented by a large circle) location on the 
screen. The application was set up to run multiple trials, in which 
a single trial consisted of a subject moving a circle on the screen 
of the device to the target by tilting it.

The movement of the target was controlled by the pitch and 
roll values produced by the user when tilting the device. In 
addition, the movement of the ball was influenced by a gain 
parameter, which was determined empirically prior to the 
experiment to allow for adequate object manipulation and to 
control the speed of trials. The velocity of the ball along with the 
angle of movement was calculated using Eqs. 1 and 2, with pitch 
and roll in degrees from the horizontal.

 
2 2Ball Velocity =  gain* roll + pitch  Eq. 1.

roll
Movement Angle (from horizonal) =   arctan( )

pitch  
Eq. 2.

The total number of trials in a set included 8 target positions, 1 
movement gain, 1 ball size, 3 target sizes, 2 target distances, and 
5 repetitions for a total of 240 trials per set. Table I shows the 
independent variables used. The combinations of these vari-
ables were presented in a random order for all trials to eliminate 
sequence effects.

Procedure
Creating a model prior to the experiment allowed for parallel 
analysis of the results. The purpose for choosing to create a 
model, rather than just use a function that defines performance 
through sleep, is to ensure that the modeling effort incorporates 
as many factors of cognition available to account for factors 
outside a simple task performance relationship.

The EPIC architecture was chosen for this study due to its 
capacity to model gyroscopic tasks.16 The task environment and 
task knowledge were prepared within the cognitive architec-
ture. The control of the simulation was based on Fitts’ law 
movement, as it has been shown that gyroscopic control tasks 
on a mobile device adhere to Fitts’ model, shown in Eq. 3.16

 Movement Time = + *  IDa b  Eq. 3.

In Fitts’ law the a variable is the time intercept, or the minimum 
amount of time required for completing a task. The b variable 
is the slope, or the increase in movement time, as the difficulty 
of a task, referred to as index of difficulty (ID), increases. The 
inverse of the slope is the index of performance (IP), also re-
ferred to as throughput, which represents a quantitative value 
for the ability to perform with increasing difficulty. Thus, task 

completion time was based on the parameters of time intercept 
and index of performance as well as the properties of the task.

The model was designed with the parameters and indepen-
dent variables to precede in the same manner as the experiment. 
The production rules had the model search for the target and 
then move the ball to the center. The values of time intercept and 
IP were changed over time based on the performance effective 
changes described in the Sleep, Activity, Fatigue, and Task Effec-
tiveness (SAFTE) model (a mathematical model describing task 
effectiveness with sleep deprivation) to simulate wakefulness 
between 6 and 24 h awake, which is shown in Eq. 4.9,10

 c

( )
E( ) =100 *   +  C( ) +  I 

R

R t
t t

 
Eq. 4.

The SAFTE equation describes task effectiveness as E(t) based 
on three parts. The 100*R(t)/Rc term represents the reservoir 
level or homeostatic sleep drive describing change in effectiveness 
with fatigue.10 C(t) represents the circadian process function 
or rather the change in task effectiveness based on the circa-
dian rhythm.10 Finally, ‘I’ describes sleep inertia or the time of 
lesser task performance shortly after waking.10 The equation 
was implemented within the EPIC model using the parameters 
described by Hursh et al.10 and used to modify various perfor-
mance variables within the EPIC architecture’s manual aimed 
movement module. A diagram describing how the variables 
were changed and derived is shown in Fig. 1.10

The IP (b), used in movement calculations, was changed by 
decreasing the mean value based on time awake and the task 
effectiveness in the SAFTE model. The time intercept (a) 
parameter was also changed by increasing it based on the num-
ber of hours awake and effectiveness. These changes were 
designed in an effort to simulate lapses and were meant to inte-
grate with the EPIC system created by Kieras et al.12 This model 
was run to simulate 10 people, each doing 240 actions or trials 
per 2-h period, totaling to 2400 runs for every simulated period 
of wakefulness or 24,000 total runs.

For the human experimental portion, subjects were asked  
to refrain from consuming any stimulants and depressants for 
48 h prior to the start of the experiment and were advised to 
keep a normal and consistent sleep schedule for 1 wk prior to 
the study. All subjects submitted journals containing their 
sleeping and eating habits for the week before the experiment, 
which indicated compliance.

Each subject completed a set of 240 movements over a 20- to 
30-min session; a session occurred every 2 h over a period of  
24 h. Throughout all experimental periods, an experimenter 
monitored subjects to ensure that they remained awake. The 
time at which subjects awoke during the day of the trial was 
monitored and subjects began the experiment 4 h after waking 
up. The first two sessions were considered learning sessions 
and were not included in final data analysis. All subsequent tri-
als were run every 2 h until the point at which the subject had 
remained awake for 24 h.

Table I. independent Variables and Task Values.

INDEPENDENT VARIABLES VALUES

Target position (° from horizontal) 0, 45, 90, 135, 180, 225, 270, 315
Movement Amplitude [cm (px)] 2.22 (125), 4.45 (250)
Target size [cm (px)] 0.71 (40), 1.07 (60), 1.79 (100)
Time Awake (hours) 6, 8, 10, 12, 14, 16, 18, 20, 22, 24
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Once the experiment began, a start screen was provided 
between each task. A trial began once a button appeared on the 
screen and was pressed by the subject. At this point a target 
appeared on the screen and the ball in the center moved as the 
device was tilted. A target was considered acquired or success-
fully hit once the circle remained within the target area for a 
total of 500 ms.

To use Fitts’ law to measure the performance, we determined 
the difficulty of every task. The task difficulty, or ID, is shown 
in Eq. 5, and is derived based on the movement distance 
required to move to a target and the width of that target. The 
width used is the effective width of the task (the difference in 
size between the target and the ball) rather than the width of 
the target itself, as the effective width estimates the target 
width focused on by the subject and has been determined to 
be more accurate for the purposes of determining difficulty of 
a task.15,16 The other performance parameters of throughput 
and time intercept are calculated based on the formula for 
Fitts’ law, shown in Eq. 3.

 2

Distance
Index of Difficulty =  Log (1+ )

Width  Eq. 5.

Because this task continues until a target is reached, we examine 
additional measures of accuracy, which are movement variabil-
ity, movement error, and number of target exits and reentries. 
These metrics are based on the path that the subjects took to 
reach the target and the ideal most direct path. From this point, 
we will refer to the distance between any point on the actual 
path and the ideal path as yi. In addition, there is the average 
path taken by a subject and we will refer to the distance between 
the average path and the ideal path as y .

The first measure of accuracy, movement variability, exam-
ines the extent to which the movement path, taken by a subject, 
lies along a mean line parallel to that of the original task axis. 
The calculations for movement variability is the same that was 
used by MacKenzie et al.16 for the evaluation of accuracy mea-
surement (Eq. 6).

 
∑ 2

i(y – )
MV =  

–1

y

n  Eq. 6.

Fig. 1. illustration of the manipulation of performance variables and implementation of sAfTe within epic. The vari-
ables of b0, b΄, and b˝ represent the input performance parameter, the varied performance parameter, and the derived 
one, respectively. The variables of a0, a΄, and a˝ represent the input intercept parameter, the varied intercept parameter, 
and the derived one, respectively.

Movement error compares the 
movement of the ball’s path directly 
to the ideal task axis. Once again, 
the calculation for movement error 
was done using the same calcula-
tion as Mackenzie et al.16 and is 
shown in Eq. 7. Finally, target 
exits and reentries describes the 
number of times that a subject 
exited and entered the target 
before successfully remaining 
inside for 500 ms.

 
∑ i(y )

ME =  
n  Eq. 7.

RESULTS

The variables examined with the model were minimum task 
time, index of performance, and a noise gain value added to the 
Fitts’ equation, as those values represented the ability of a per-
son to perform a task. The results are shown in Fig. 2. Though 
second order affects appear to be present, linear regression is 
used to test for general trends. It was found that average pre-
dicted movement time increased over time (R2 5 0.61, P , 
0.01). The average predicted throughput decreased over time 
(R2 5 0.57, P , 0.01). The average intercept increased over time 
(R2 5 0.60, P , 0.01).

The performance data can also be visualized in the average 
performance lines for each time awake and difficulty curves in 
Figs. 3A and 3B, which display how movement times change 
with the difficulty of the task. It is possible to see a general 
increase in movement time with hours awake along with an 
influence of circadian rhythm especially after 24 h in the model 
results. The performance lines and difficulty curves once again 
show the significant change in performance across various 
measures as time awake increases.

The performance lines, based on the output of our modified 
EPIC model, show a culmination of the three metrics: move-
ment time, throughput, and intercept. Unfortunately, the EPIC 
architecture does not have a way of simulating accuracy and, 
therefore, only these predictions can be used.

Following creation of the model, 10 subjects performed all 
the movement tasks without data loss or having to restart. The 
R2 between the index of difficulty and average movement time 
was computed for every set of 240 trials. Over 100 sets of trials 
(10 subjects over 10 sessions), the average R2 value was 0.99 
with a standard deviation of 0.015. This provides strong evi-
dence that movements in the tasks examined in this study were 
in fact Fitts’ movements.

Data from the learning trials showed that performance fol-
lowed the power law of learning and did not appear to be sig-
nificantly affected by fatigue, and showed an apparent plateau 
by the end of the second session for each person.18 Fig. 2 shows 
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the average movement time, throughput, and intercept values 
that were taken for each set of trials overlaid on the predic-
tions from the model. These values were then averaged and 

compared to hours awake. After examining overall trend using 
regression and performing one-way ANOVA analysis in con-
junction with Dunn-Sidak post hoc to look for differences in 
performance between different levels of wakefulness, it was 
found that over the period of 24 h, there was no reliable change 
in movement time [F(9,90) 5 0.26, R2 5 0.11, P 5 0.35]. In 
addition, no reliable change in throughput was found [F(9,90) 5  
0.45, R2 5 0.15, P 5 0.26]. Finally, no change was found with 
intercept [F(9,90) 5 0.69, R2 5 0.27, P 5 0.12]. All results show 
no significant change in performance as time awake increases.

Average performance lines and difficulty curves, based on 
Eq. 5, are shown in Figs. 3C and 3D. The performance lines and 
difficulty curves once again show that the movement time, 
throughput, and intercept have no reliable changes as subjects 
become more susceptible to sleep deprivation.

Accuracy-based measurements were also taken in the form 
of movement variability, movement error, and movement reen-
tries. Similar to the performance results, after regression and 
performing ANOVA analysis with Dunn-Sidak post hoc analy-
sis, it was found that there was no noticeable change in move-
ment variability with time awake [F(9,90) 5 0.15, R2 5 0.15,  
P 5 0.03]. There was also no noticeable change in movement 
error [F(9,90) 5 0.35, R2 5 0.35, P 5 0.01] and no noticeable 
change in movement reentries [F(9,90) 5 0.35, R2 5 0.32, P 5 
0.01]. Fig. 4 shows the data for all accuracy-based measure-
ments for all subjects and difficulties; there are not correspond-
ing predictions from the model.

DISCUSSION

The purpose of this study was to determine how the perfor-
mance of a person performing a tilt-based interface task 
changed over the course of 24 h awake, and how that perfor-
mance compared to existing models (i.e., SAFTE). When mod-
eled within the EPIC architecture, the model predicted a 
decrement in performance with increased time awake in the 
three performance measures of movement time, throughput, 
and intercept. However, the predicted changes were not sup-
ported in the experiment. Like other models, the parameters 
were only modified based on the number of hours awake. The 
relationship between hours awake and how the individual 
parameters vary is more complex than what was modeled and 
seems to be also dependent on the task at hand. This implies 
that the predictions for the task demonstrated in this study were 
not as expected based on current models of sleep loss.

Because the model’s predictions do not correlate with the 
experimental measurements, it was useful to examine the 
results of the observational data, starting with the average 
movement time to complete a task. This measurement repre-
sented the full action as a whole and allows for simple eval-
uation of the performance of the subjects. The final results 
provided evidence that the average movement time did not 
change over the period of sleep deprivation, which is not con-
sistent with previous sleep deprivation tasks that employed a 
psychomotor vigilance task nor with the model’s predictions. 

Fig. 2. A) The average movement time (6 seM) across all subject data (white 
markers) and the model predication (grey markers). B) The average throughput 
(6 seM) across all subject data (white markers) and the model predication (grey 
markers). c) The average intercept (6 seM) across all subject data (white mark-
ers) and the model predication (black markers).
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Previous studies have found that reaction time for psychomotor 
vigilance tasks, tasks that frequently cause lapses in subjects, 
increased clearly and distinctly with wakefulness.13

Examining the differences between this task and others, it is 
reasonable to examine aspects of this experiment and task that 
may have caused these differences. It is unlikely that learning 
effects had a significant influence on the results, as any effects 
would have been detected in early trials and would need to 
identically keep pace with fatigue throughout the entire experi-
ment. The sample size could also be increased; however, the low 
standard error empirically suggests that increasing the sample 
size to the point of finding significance will lead to low ecologi-
cal relevance.

The examination of the index of performance in this study 
represents the throughput of information being processed by the 
subjects. This measurement represents the increase in time nec-
essary to complete a task as the difficulty increases. It was found 
that over a period of 24 h of sleep deprivation that the throughput 
of subjects did not significantly change between trials, meaning 

that there was no increase in time between tasks of different dif-
ficulties as the subjects became more sleep deprived. While this 
particular experiment did not show any change in throughput, it 
is possible that a difference in performance could be found if cer-
tain parameters of the experiment were altered such as the hours 
awake, velocity gain, or the range of index of difficulties.

The intercept, representing the minimum time required to 
complete a task, also did not significantly change with increas-
ing sleep deprivation. This value is affected by many of the same 
parameters that affect throughput. However, unlike through-
put, the intercept could also have been affected by the start 
screen interface, which removed some of the psychomotor vigi-
lance elements of this task. A button between each trial was 
meant to create consistency between trials as well as provide 
definitive start and stop times for each task that were controlled 
by the subject. However, because the start time was defined by 
the subjects, one element where lapses could occur was 
removed. A different type of interface or pause between trials 
could show an increase in intercept with increasing hours 

Fig. 3. A) Average predicted performance lines representing movement times for the levels of ids and sleep deprivation (6 seM). B) predicted difficulty curves for 
each id showing movement times for four ids, with id values A through d representing increasing task difficulty (6 seM). c) Average performance lines representing 
movement times for various levels of sleep deprivation from subject data (6 seM). d) difficulty curves for each id showing movement times for four ids, with ids A 
through d representing increasing task difficulty from subject data (6 seM).
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awake; however, it would change the type of task (i.e., make it a 
vigilance-based task).

The accuracy of the tasks was also found to not have a sig-
nificant change over a wakeful period of 24 h. This indicated 

that this motor skill of the subjects did not appear to decrease 
over time, and that subjects were able to retain their accuracy 
while simultaneously retaining their performance over the 
period of wakefulness. There do appear to be influences on task 
completion time from circadian rhythms, but they were muted 
in this task. Thus, there is not a speed-accuracy tradeoff mask-
ing effects of sleep loss on response time.

Taking into account that all performance and accuracy mea-
surements remained consistent over the 24-h period, the previ-
ous assumption that performance and accuracy would decrease 
with increased wakefulness did not hold true in this task, as was 
expected from previous research regarding psychomotor vigi-
lance and wakefulness and included in our model from the 
SAFTE model.10,19 It was found that for this type of task, the 
previous general decrement with sleep loss does not accurately 
predict an individual’s activity for this task.

In this particular experiment, the type of task presented to the 
subjects was a more active task and it was possible that it did not 
require the level of vigilance to complete as other tasks, which 
could explain why there was no effect of sleep loss. This was 
unexpected because this task seemed to require low levels of 
engagement and was fairly monotonous and thus, based on the 
controlled attention hypothesis, it would be susceptible to sleep 
deprivation.19 Thus, one possibility for a lack of change in perfor-
mance could be that the task was simply more engaging than 
those tasks used in the past. However, this task did not have 
nearly the wide range of information processing as those tasks 
explored when examining control attention, and a high degree of 
engagement for this task could be of a different type. 19

Another potential alternative for the performance observed 
in this study could be that the task in this experiment used 
different or additional cognitive or perceptual motor pro-
cesses than initially thought. For example, if this task caused 
lower activation in the prefrontal cortex, but higher activation 
elsewhere, the prediction based on the neuropsychological 
hypothesis would not hold.4 The tilt-based task was also only 
run for a period of 20 min every 2 h, which may not have been 
long enough to induce potential time-on-task effects or the 
induction of conceivable intertwining between sleep depriva-
tion and time-on-task.2 Finally, while this study examined 
subjects who were kept awake for 24 h, it may be that people 
did not reach the level of sleep deprivation needed to be 
affected.

In addition to the lack of consistency with psychomotor 
tasks when working with psychological modeling, there are sig-
nificantly more processes that need to be taken into account 
than just how long an individual has been awake. In the predic-
tion model developed by Gunzelmann et al.9, variables that 
controlled throughput, accuracy, and error were varied based 
entirely on an individual’s wakefulness. Other mathematical 
models that estimate performance based on sleep deprivation 
use a blanket variable of percent performance to all tasks in a 
nonspecific manner.10,17 However, it is very likely that the rela-
tionship between task-specific cognitive processes and fatigue-
dependent cognitive processes needs to be clearly defined 
before a more accurate model for prediction can be built.

Fig. 4. A) The average movement variability (6 seM) for all subject data. B) The 
average movement error (6 seM) for all subject data. c) The average reentries 
(6 seM) for all subject data.
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This study modeled and empirically examined the change in 
users’ performance and accuracy while using a tilt-based con-
trol device over a period of 24 h of sleep deprivation. The model, 
based on information in the literature, predicted that there 
would be a significant change in performance. The observed 
performance parameters of movement time, throughput, and 
average intercept did not significantly change over the duration 
of the experiment, which differed from the expected prediction 
of the model. In addition, the accuracy parameters of move-
ment error, movement variability, and number of reentries also 
did not change over the experimental period. The sustained 
performance and accuracy over this time period for this type of 
control does not follow previously found parameters from psy-
chomotor vigilance tasks. The results suggest that this task was 
not affected by sleep deprivation within the time period tested. 
The findings presented here undermine the notion that fatigue 
affects all performance tasks equally as is currently predicted.

In the future, the next steps would be to examine varied  
psychomotor tasks such as the one examined in this paper to 
determine which aspects are more or less affected by sleep 
deprivation. This information can lead to valuable data that can 
be used to improve theories of the effects of sleep loss as they 
are realized in cognitive architectures.

A few changes could be made to this type of experiment 
that would allow a deeper examination of tilt-based control. 
The first would be in using a wider range of task difficulty 
(e.g., smaller targets) to see if differences can be found at 
higher levels of difficulty. Next, the interface between trials 
could be changed to mimic a subject receiving a specific stim-
ulus so that more possibilities for lapses to occur could be 
introduced.

Finally, while decrements are seen in other tasks within 24 
h, that sleep loss time span may not have been a long enough 
time to see performance degradation from sleep deprivation 
on this task, and future studies may look to increase this time, 
as studies have shown that time awake is one of the most sig-
nificant factors when examining between-studies variability.13 
However, these results suggest that perceptual-motor skills 
may be more robust against sleep fatigue than other compo-
nents of thought.
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