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ABSTRACT Model order estimation is the most important but challenging step for system identification
using an autoregressive moving average (ARMA) model. In this paper, we propose an artificial neural
network (ANN) structure to estimate the best model order for ARMA modeling of linear, time-invariant
systems using the system’s input and output data. The proposed algorithm creates an equivalent ANN
structure corresponding to an ARMA model and chooses the best model order using the neural network’s
mean squared error (MSE) loss function. The proposed method is validated on simulated ARMAmodel data
and the performance is compared with the Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC). We considered three hypothetical linear systems and performed 100 Monte Carlo simula-
tions for each model, with different data lengths, and with additive noise. For each of the three simulation
models, the proposedmethod significantly outperformed the AIC and BIC in terms of the correct model order
selection. Finally, the proposed ANN-based model order estimator was successfully applied to determine the
dynamic relationship between heart rate (HR) and instantaneous lung volume (ILV) using an ARMAmodel.
The results indicate that physiological and biological systems can be modeled with appropriate ARMA
models obtained by the proposed algorithm to better understand the system dynamics.

INDEX TERMS ARMA, artificial neural network, model order, AIC, BIC.

I. INTRODUCTION
Proper mathematical description of a physiological system
is often sought in order to analyze the system’s overall
behavior and to predict its output, given input data. Given
the popularity of deep learning approaches, our study has
attempted to determine a model order for a parametric-based
autoregressive moving average (ARMA) representation with
a convolution neural network (CNN) configuration [1]. A key
challenge is that CNN-based deep learning requires a vast
amount of training data, which is not readily available for
most cases.

An ARMA model is often preferred for linear system
identification because of its compact representation of the
system’s response based on the input and output data.
For example, ARMA modeling from multiple inputs and
delays has been proposed for biological systems in [2].
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The highly flexible structure of the ARMA model has been
widely used to find the dynamics of systems and found
application in wide-ranging areas including brain potential
identification [3], measuring the transient response of a sub-
scale sailplane [4], and predicting heart rate (HR) from arte-
rial blood pressure (ABP) and instantaneous lung volume
(ILV) [2], [5], for example.

Two important steps for ARMA modeling are: (i) model
order estimation and (ii) coefficient estimation. The first and
the most important step in ARMA modeling is to deter-
mine the correct model order (i.e. determining the orders of
AR and MA polynomials). There have been several meth-
ods proposed for ARMA model order estimation. The most
popular methods are the final prediction error [6], Akaike
Information Criterion (AIC) [7], Bayesian Information Crite-
rion (BIC) [8], minimum description length (MDL) [9], and
minimum eigenvalue criterion (MRV) [10]. Most of these
methods rely on overdetermined model orders for AR and
MA polynomials (i.e. 0 ≤ p ≤ pmax , 0 ≤ q ≤ qmax)
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and calculate the corresponding loss function for each of the
combinations of the predetermined model orders. Finally, the
combination of AR and MA orders that gives the least loss
value is considered the correct model order.

In [11], the authors presented an accurate technique for
estimating linear and nonlinear ARMA model parameters
using the optimal parameter search (OPS) algorithm [12].
This approach has been shown to be more accurate than
the above-noted model order determination techniques. The
primary reason the OPS method works better than AIC, for
example, is that the former is able to handle missing terms
whereas the latter would assign some value since it is based
on the traditional least-squares approach for model order
estimation.

There have been some efforts using artificial intelligence
including genetic algorithms [13], [14] and artificial neural
networks [15]–[17] for model order determination. However,
the model order estimation accuracy is not much better than
it is for most of the aforementioned methods.

In this paper, we will describe the use of the artificial
neural network (ANN) structure described in [18] for auto-
matic ARMA model order identification. In [18], the authors
showed the equivalence of the ANN structure and the ARMA
model equation and estimated linear and nonlinear ARMA
parameters using the neural network’s weights. However,
it was assumed that the model order was known, as the accu-
racy of the parameter estimation degraded when the model
order was incorrectly chosen. To overcome this limitation, in
this work, we used the feedforward ANN structure to deter-
mine the correct model order based on the neural network loss
function criterion.

II. METHODOLOGY
A. SYSTEM IDENTIFICATION AND ARMA MODEL
System identification refers to the methodology of building
a mathematical model structure optimizing the error criterion
between a model output and a system’s desired output based
on some experimental data. A linear, time invariant system
can be modeled by an ARMA model with the following
equation:

y (n) =
p∑
i=1

ais (n− i)+
q∑
j=0

bjx (n− j)+ e(n) (1)

where x (n) is the input to the system, y (n) is the noiseless
output and e (n) is the residual error [19]. The first term
of the right-hand side of equation (1) represents the AR
polynomials, where p is the maximum AR order. Similarly,
the second term is the MA polynomials and q represents the
maximum MA order.

A (z) y (z) = B (z) x (z) (2)

where

A (z) = 1−
p∑
i=1

aiz−i, B (z) =
q∑
j=1

bjz−j. (3)

From equation (2), we can define the following transfer
function:

H (z) =
B (z)
A (z)

. (4)

This system can be approximated using the ARMA model
provided that A (z) and B (z) can be approximated with finite
polynomials in the Z-domain. Fig. 1 shows a general block
diagram for system identification.

FIGURE 1. General system identification block diagram.

FIGURE 2. The proposed ANN topology.

B. NEURAL NETWORK
We propose a feedforward neural network where informa-
tion flows in one direction (input to output) to create an
ARMAmodel. Fig. 2 shows the proposedANN structure with
delayed input and output samples which are fed to the neural
network inputs. Therefore, the neural network’s output can be
represented as a function f of present and past values of input
and output samples, as described in the following equation:

y (n) = f (x(n), x(n− 1), . . . , x(n− q),

y(n− 1), y(n− 2), . . . , y(n− p)), (5)

where p and q represent the orders of autoregressive and
moving average polynomials, respectively.

Since all of the inputs in this neural network are composed
of delayed input and output signals, this network can be con-
sidered as a dynamic network where each input is multiplied
by its corresponding weight such that wjk connects input
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x(n− j) with the kth hidden unit and w(q+i)k connects x(n− i)
with the kth hidden unit. TheM hidden outputs are multiplied
by output weights c1, c2, . . . , cM and are summed together to
estimate the present output, y(n). We did not use any bias in
the network. The output of the proposed ANN structure can
be written as follows:

y̌ (n) =
M∑
i=1

ciφ (vi)+ e (n), (6)

where φ is the activation function used, ci are the weights of
the hidden unit i to the output, M is the number of hidden
units, and vi are the weighted sum of inputs to the hidden
unit i. Therefore, vi can be rewritten as follows:

vi =
q∑
j=0

wjix (n− j)+
p∑
j=1

w(j+q)iy (n− j) , (7)

where w is the neural network weight matrix with dimension
of (p+ q+ 1) × M . Now, if we consider the polynomial
representation of the activation φ (vi) such that:

φ (vi) = β0 + β1vi + β2v2i . . .+ βnv
n
i + . . . (8)

then combining Eqs. (6) and (8) yields:

y̌ (n)

= c1
(
β0 + β1v1 + β2v21 + . . .+ βnv1 + . . .

)
+ c2

(
β0 + β1v2 + β2v22 + . . .+ βnv2 + . . .

)
+ . . .+ cm

(
β0 + β1vM + β2v2M + . . .+ βnvM + . . .

)
+ e (n) . (9)

Replacing vi from equations (7) and (9) and gathering the
like terms, the following expression can be derived (up to 2nd

order nonlinearity for brevity):

y̌ (n) = c1β0 + c2β0 + . . .+ cMβ0

+

q∑
j=0

(c1β1wj1 + c2β1wj2

+ . . .+ cMβ1wjM )x (n− j)

+

p∑
j=1

(c1β1w(j+q)1 + c2β1w(j+q)2

+ . . .+ cMβ1w(j+q)M )y (n− j)

+

p∑
j=1

p∑
k=1

(c1β2w(j+q)1w(k+1)1

+ c2β2w(j+q)1w(k+q)2

+ . . .+cMβ2w(j+q)Mw(k+q)M )x(n− j)

× x(n− k)+
p∑
j=1

p∑
k=1

(c1β2w(j+q)1w(k+1)1

+ c2β2w(j+q)1w(k+q)2

+ · · · + cMβ2w(j+q)Mw(k+q)M )

× y(n− j)y(n− k)+ · · · + e(n). (10)

In cases where the neural network has an activation func-
tion of first order only, the higher order terms in Eq. (10)
vanish (since βi = 0, for i ≥ 2). Therefore, Eq. (11) follows
the same structure as Eq. (1)

y̌ (n) = c1β0 + c2β0 + . . .+ cMβ0

+

q∑
j=0

(c1β1wj1 + c2β1wj2

+ . . .+ cMβ1wjM )x (n− j)

+

p∑
j=1

(c1β1w(j+q)1 + c2β1w(j+q)2

+ . . .+ cMβ1w(j+q)M )y (n− j)+ e (n) . (11)

Comparing the coefficients from Eqs. (11) and (1), ARMA
parameters a and b can be represented in terms of the ANN
weights.

a (i) = β1
M∑
k=1

ckw(i+q)k (12)

b (i) = β1
M∑

k=q+1

ckwik (13)

This approach has been used in [18] for ARMA coeffi-
cients estimation and it produced better results when com-
pared to the traditional least squares methods. However,
it was also shown that the accuracy of parameter estimation
degraded with incorrect model order selection [18].
We have shown how ANN can be used to derive ARMA

parameters using equations 12-13. Since these parameters are
affected by the model order selection, it is critical to find an
approach to best determine the model order. Similar to AIC
and BIC model order criteria, we have used the minimization
of the mean square error (MSE) as the criterion to find the
optimal model order for a given system.

C. ARMA MODEL ORDER ESTIMATION
For a particular input and output time series data, the neural
networked structure described in Fig. 1 is trained for a fixed
number of epochs using a series of different orders (1 ≤
p ≤ pmax , 0 ≤ q ≤ qmax). It can be easily seen from
the ANN structure that depending on the order combination,
the input layer uses different lags of the input and output time
series which are determined by the AR and MA order. It is
expected that for the correct model order, the mean square
error (MSE) of the neural network should be minimum.
However, with higher order combinations as well as noise
corruption, the loss value can still decrease but at a very slow
rate. Therefore, selection of correct order based on minimum
MSE loss gives over estimation in certain instances. In order
to address this issue, we utilized both loss value and the rate
change of loss to decide the correct model order.
For each combination of the model orders we sort the MSE

values of different epochs in ascending order and calculated
the average of the first five MSEs. Finally, we compute the
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percent change in the loss function as we increase the model
order. Let us consider the average MSE loss in the last n
epochs for kth combination of AR and MA orders is L (k) ,
where k is any number between 1 to the total number of
combinations of AR and MA orders, N. Then, we defined the
percent change in the loss for changes in the model order as:

Ľ(k) =
L (k − 1)− L (k)

L (k)
× 100% (14)

where, k = 2, 3, . . .N .
We compute the model orders’ loss values using the log

transformation. The order of the loss is defined as:

r (k) = integer (log (L (k))) . (15)

For example, r = log (10r ). Finally, we defined the lowest
model order combination (p, q) as the correct model order
for which the order of the loss is the minimum, and the
percent change in the loss function is above a certain positive
threshold. There are some cases when there are only a few
(one or two) or most of the combinations of model orders for
which the order of the loss (r value) is minimum. In those
cases, we selected the lowest model order combination for
which the loss value was less than 1.5 times theminimum loss
and the rate change of loss was greater than a certain positive
threshold as the correct model orders. It should be noted that
for k = 1, there is no percentage change in the loss value.
Therefore, we considered this as the correct order if the order
of the loss was the minimum.

FIGURE 3. MSE loss for different combinations of AR and MA orders.

Fig. 3 shows the 3D loss function plot for an ARMA (2,1)
model, in which the red circle marks the true model orders.
It can be observed from the figure that the loss value is also
very low for orders beyond (2,1). However, the rate change
of loss is also very low, which suggests that increasing orders
beyond (2,1) does not significantly add extra contribution to
the model.

For the input and output time series data, the overall pro-
cedure of the algorithm for model order determination is
summarized in Table 1.

TABLE 1. Model order estimation algorithm.

III. SIMULATION AND RESULTS
A. PERFORMANCE ON SIMULATED DATA
The proposed method for ARMA model order identification
was validated on three different simulated models. As most
real world systems can be modeled with ARMA(5,5),
as described in [20], in this paper we fixed the maximum AR
and MA orders at 5 (AR(1-5) and MA (0-5)).

For the neural network, we used (M = 20) hidden units
(based on trials of 5, 10, 20, 50, and 100) and we trained the
model up to 25 epochs (with a batch size of 20) for each of
the combinations of the AR and MA orders. For updating the
neural parameter, we used the Adam optimizer [21] with a
moderate learning rate of 0.008 which was chosen empiri-
cally to provide an optimal training. The Adam optimizer is
a popular first order gradient-based optimization algorithm
which is widely used in deep learning applications [22].
Since learning rates do affect the loss function [23], we fixed
the empirically-derived optimal learning rate throughout the
entire analysis. Fig.4. shows a representative example of
training the neural network. We segmented the data sequence
into training (700 samples) and validation (300 samples) to
observe the loss characteristics during the training process.
As shown in Fig. 4, the MSE loss values for both training and
validation datasets follow the same decreasing trend, which
indicates non-overfitting of the data. We found that the rate
of MSE reduction becomes minimal after∼15 epochs. Since
we only considered linear time invariant systems, we used the
rectified linear unit (ReLU) activation function [24] for the
hidden units. However, other non-linear functions can also
be used with linear approximations. For example, non-linear
functions can be approximated using the first order Taylor’s
expansion as described in [25]. The computation was per-
formed in Python 3.7 version with PyTorch package [26].

For each combination of the model orders, we computed
the average training MSE loss value of the last 10 epochs
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FIGURE 4. Training neural network.

where loss value reached a steady state. For each of the
systems to be identified, we performed 100Monte Carlo sim-
ulations at each of the different lengths (200, 400, 600, 800,
and 1000 samples) of time series and performed model order
estimation using the proposed method, AIC, and BIC criteria
for comparison of these methods’ performance. Model iden-
tification using the AIC and BIC criteria was performed using
the R software described in [27]. This approach requires the
time series data to be stationary and invertible.

In order to make the time series data stationary and invert-
ible, the coefficients a and b were chosen such that all the
roots of AR and MA coefficients are outside the unit circle.
At first, we started with random initial coefficients and then
we adjusted them until they satisfied the stationarity and
invertibility criteria.
Example 1: We simulated the following ARMA (2,0)

model and performed 100 Monte Carlo simulations.

H (z) =
1

1− 0.2688z−1 − 0.9169z−2
. (16)

While the simulation example has the exact known model
order, in practical situation, based on the known input and
output data, we do not know the precise model order. Hence,
the purpose of the work was to determine the correct model
order given the initial incorrect (overdetermined) model order
assumption using only the input and output data using the
neural network. For example, in simulation example involv-
ing Eq. (15), while the correct model order is ARMA (2,0),
we initially assumed the model order to be ARMA (5,5).
From this overdetermined ARMA model order the goal was
to determine the correct ARMA (2,0) model order using our
proposed NN and compare its results with AIC and BIC. The
same strategy was applied to other simulation examples to
follow.

Fig. 5 shows a segment of the input signal (generated with
Gaussian white noise) and corresponding ARMA model out-
put signal of Eq. (16).We simulated 100 different realizations
of the system’s response with time series lengths of 200, 400,
600, 800, and 1000

The comparison of the order estimation results is shown
in Fig. 6. The proposedANN-basedmethod provides accurate
order estimation for every length of the signals. It can also

FIGURE 5. Input signal (a) and corresponding ARMA model output for
eq. (15) (b).

FIGURE 6. Comparison of correct order estimation using different order
estimation techniques for an ARMA (2,0) model.

be seen that the proposed method is less sensitive to the data
length than is the BIC criterion. The performance of the AIC
criterion is low compared to both the BIC criterion and the
proposed method.
Example 2: We considered a second hypothetical system

simulated using the following ARMA (2,1) model:

H (z) =
1+ 0.2910z−1

1− 0.7047− 0.5553z−2
. (17)

Similar to example 1, we performed 100 Monte Carlo sim-
ulation of the system’s response at five different time series
lengths. The model order estimation results are presented
in Fig. 7. The plots indicate that the performance of the
proposed ANN-based model order selection is better than the
AIC and BIC criteria. In addition, the proposed method pro-
vided accurate order estimation almost irrespective of the data
lengths, whereas the model order estimation performance
based on AIC and BIC degrades for smaller lengths of time
series.
Example 3:We considered a third hypothetical systemwith

a relatively higher order (ARMA (4, 2)) model:

H (z)

=
1+0.2823z−1−0.4690z−2

1+0.3107z−1+0.3251z−2+0.0561z−3−0.8154z−4
(18)
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FIGURE 7. Comparison of correct order estimation using different order
estimation techniques for ARMA (2,1) model.

TABLE 2. Model order detection performance of the system of eq. (19).

Similar to examples 1 and 2, we performed 100 Monte
Carlo realizations of Eq. (19) at different time series lengths
(200, 400, 600, 800, and 1000). The model order estimation
results for this system are shown in Table 2. Again, the pro-
posed method outperforms the AIC and the BIC selection
criteria in terms of the number of correctly detected model
orders. Moreover, the proposed method could identify the
correct model order almost all times, irrespective of the time
series length, whereas the AIC and BIC criteria are more
sensitive to the data length and their performances decreased
for longer time series lengths.

We compared the effect of additive noise on the model
order estimation for Eqs. (17-18). We added Gaussian white
noise that is independent from the input to the output data
(of 1000 samples) at three different SNR levels consisting
of 50 dB, 30 dB, and 10 dB, and compared the model order
estimation performances for these two simulation examples.
As shown in Table 3, the proposed ANN criterion provided
significantly better performance when compared to AIC and
BIC criteria at 50 dB and 30 dB SNR levels. At the lowest
SNR level (e.g. 10 dB) the performance of the ANN based
order selection is again better than BIC and AIC but its per-
formance is not as good as the higher SNR as expected [28].
This is because the output data are corrupted with significant
noise, all methods including the ANNhave trouble estimating
the correct model order.

B. APPLICATION TO EXPERIMENTAL DATA
In this subsection, we will demonstrate that the proposed
ANN-based model order selection method can be used to
analyze experimentally obtained instantaneous lung vol-
ume (ILV) and heart rate (HR) data. Since respiration affects
fluctuations in HR, it is interesting to understand the dynamic

TABLE 3. Effect of measurement noise on model order estimation.

relationship between ILV and HR. In the past, several linear
system methods such as the power spectrum [29], transfer
function [30], and impulse response [31] have been per-
formed on ILV and HR data. In this paper, our purpose is
to examine if the proposed model order selection method
can find proper model orders to obtain physiologically inter-
pretable impulse response functions [18], [31].

We used experimentally obtained human subject ILV and
HR data published in [30], [32]. While detailed descriptions
of the data collection can be found in [30], we provide a
brief summary here. This dataset consists of surface electro-
cardiogram (S-ECG) and changes in ILV from five subjects.
A 13-minute data sample was collected for the supine posi-
tion. The S-ECG and ILV signals were recorded at a sampling
frequency of 360 Hz, which is high enough to allow accurate
QRS detection [33], [34]. The HR and ILV data were then
down-sampled to 3Hz, since the dynamics of HRfluctuations
are located at frequencies below 0.5 Hz [18], [29]–[31]. For
the model order estimation, the input (ILV data) and output
(HR data) pair of a 500 data point segment were used. The
neural network was trained for a wide range of model orders
(AR (1-15) andMA (0-15)). The best model order was chosen
using proposed ANN based model order selection and the
BIC criterion as well. We only considered BIC criterion
since it has shown to be more accurate than AIC. Finally,
the ARMA parameters were estimated using the least squares
method for the model order estimated by the ANN and the
BIC criterion. The impulse response functions obtained for
five different subjects were then averaged to obtain an overall
impulse response function, which is shown in Fig. 8. The
upper and lower panels show the averaged impulse response
obtained using the model order estimated by ANN based
proposedmodel andBIC criterion, respectively. The averaged
impulse responses in both panels have a fast positive peak
followed by an underdamped wave, which has also been
shown in previous studies [18], [30], [31]. Physiologically,
the abrupt rise in HR is due to respiration modulating the
increase due to the autonomic nervous system. The red and
yellow linesmark the standard deviation bounds at each of the
sampled values. It can be also seen that the impulse response
functions obtained using BIC criterion has larger deviations
especially around the first positive peak value.

IV. DISCUSSION
The results presented in this paper suggest that the proposed
ANN-based model order detection algorithm can determine
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FIGURE 8. Averaged impulse response obtained using ILV and HR data.
(a) Using the proposed model order selection. (b) Using BIC criterion.

the correct ARMA model order to model a physical system
using experimentally obtained input and output data. In the
process of obtaining the correct model order, the ARMA
coefficients can also be obtained for the best model order
from the neural network weight matrix using Eqs. (12-13).
Therefore, the proposedmethod can be used for identification
of any linear time-invariant system.

The performance of the proposed ANN-based model order
selection technique was validated on three hypothetical sys-
tems. We performed 100 Monte Carlo simulations for each
of the systems, using different time series lengths. The model
order estimation performancewhen usingAIC andBIC selec-
tion criteria was found to be sensitive to the data length,
as shown in another research paper [35]. In contrast, the pro-
posed ANN approach shows low dependency on the data
length and provides accurate model order almost irrespective
of the data length. Moreover, the application of the proposed
ANN based model order selection method on the ILV and
HR data resulted in more consistent impulse response func-
tion. While five subjects may not be enough to represent
the 95% confidence bounds, comparing the pattern of the
impulse response with that of the previously published stud-
ies [18], [30], [31], we can conclude that the proposed ANN
based model order selection shows more similar performance
in obtaining physiologically interpretable impulse response
function than via BIC criterion. This suggests that the pro-
posed method can be applied on the physiological data to
obtain more consistent estimates of the system’s dynamics.

While providing a better order estimation accuracy,
the proposed ANN approach also requires higher computa-
tional time. For our study, the ANN required 9 sec (data
length 400 samples) to 16 sec (data length 1000 samples)
to the estimate the model order, for example, the Eq, (18).
This time is calculated using a Windows 10 computer with

intel(R) Core (TM) i7-8700k CPU @3.70 GHz and memory
of 32 GB. The number of parameters of the ANN varied
between a minimum of 60 (for ARMA (1,0)) to a maxi-
mum of 240 (for ARMA (5,5)). However, for time-invariant
systems, once the model order is known, it can be used
in the future without re-estimation. This approach can also
be extended to time-varying dynamic systems. In addition,
we considered only linear ARMA models in this paper. This
work can be easily generalized for any nonlinear system as
well, by incorporating non-linearity in the activation function.

V. CONCLUSION
We have shown that an ANN structure can be used for
accurate model order estimation of the ARMA model using
the input and the output data. We considered three differ-
ent arbitrary linear time invariant systems and performed
100 Monte Carlo simulations at each of the different data
lengths. Finally, we compared the model order estimation
performance of the proposed method with that of the AIC
and BIC selection criteria on the 100 realizations. For each
of the systems, the proposed model order selection method
showed significantly better performance than did either AIC
or BIC. Even though we considered systems with one input
and one output, this approach can be generalized for multiple
inputs and outputs. In future work, we can generalize the
method for nonlinear ARMAmodels to include the nonlinear
system characteristics as well. It should be mentioned that
even though in this paper we considered the AR and MA
order up to 5, this is not a limitation of this approach. The
algorithm can be generalized for any model orders but at the
cost of increased computational time.
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