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a b s t r a c t

Data visualization is critical to unraveling hidden information from complex and high-dimensional
data. Interpretable visualization methods are critical, especially in the biology and medical fields,
however, there are limited effective visualization methods for large genetic data. Current visualization
methods are limited to lower-dimensional data and their performance suffers if there is missing
data. In this study, we propose a literature-based visualization method to reduce high-dimensional
data without compromising the dynamics of the single nucleotide polymorphisms (SNP) and textual
interpretability. Our method is innovative because it is shown to (1) preserves both global and local
structures of SNP while reducing the dimension of the data using literature text representations,
and (2) enables interpretable visualizations using textual information. For performance evaluations,
we examined the proposed approach to classify various classification categories including race,
myocardial infarction event age groups, and sex using several machine learning models on the
literature-derived SNP data. We used visualization approaches to examine clustering of data as well as
quantitative performance metrics for the classification of the risk factors examined above. Our method
outperformed all popular dimensionality reduction and visualization methods for both classification
and visualization, and it is robust against missing and higher-dimensional data. Moreover, we found
it feasible to incorporate both genetic and other risk information obtained from literature with our
method.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As genomic data are high-dimensional, consisting of millions
f genotype markers, despite recent efforts, many of the existing
ata have not yet been fully elucidated (Al-Husain & Hafez, 2015).
nderstanding the dynamics of genotype data is critical, which
eads to potential breakthroughs, especially in biology and the
edical fields (Diaz-Papkovich et al., 2019). To foster better dis-
rimination of genetic variants among vast amounts of genomic
ata, one such approach to reducing complexity of the dynamics
s data visualization (Li et al., 2014; Yang et al., 2018). For data
isualization to be informative, it is critical to capture both the
verall shape (global structure) and the fine granular shapes (local
tructure) of the data (Thioulouse et al., 1995). Global structures
re those that separate two spatial groups such as population
atches or geographic clines whereas local structures represent
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genetic differences among neighbors of entities (i.e., disease risk)
(Diaz-Papkovich et al., 2019; Jombart et al., 2008; Sakaue et al.,
2020).

In recent years, genetic data visualization tools have been
widely used for various applications including genetic data qual-
ity control (QC) procedures (de Bakker et al., 2008; Morris et al.,
2010), population structure estimations (Diaz-Papkovich et al.,
2019), and disease risk analysis (Reisberg et al., 2017; Sakaue
et al., 2020). The visualization has been conducted on single
nucleotide polymorphisms (SNP) using the principal component
analysis (PCA) (Jolliffe & Cadima, 2016), t-distributed stochastic
neighbor embedding (t-SNE) (van der Maaten & Hinton, 2008),
and uniform manifold approximation and projection (UMAP)
(Diaz-Papkovich et al., 2021; McInnes et al., 2020). However,
these visualization methods are sensitive to the data size and
noise (Diaz-Papkovich et al., 2019; Dorrity et al., 2020; Li et al.,
2017) which can lead to misleading visualization results (Huang
et al., 2022). Hence, given these popular methods’ shortcomings,
better visualization methods that preserve and unravel the dy-
namics of both global and local structures with interpretability
are critically needed.

In this paper, we propose literature text-based visualization
approaches using natural language processing techniques for
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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etter genetic data visualization with textual interpretability.
atural language processing techniques have been gaining in-
reasing popularity since they can perform multi-dimensional
athering of information and processing to provide effective
uestion answers and summaries (Locke et al., 2021; Zhou et al.,
022). One such successful approach is the use of neural networks
or a word embedding model, which has been applied for word
istribution representations (Wang et al., 2020), natural language
nference (Conneau et al., 2017), text classification (Martinez-
ico et al., 2019), information retrieval (Krämer et al., 2022; Roy
t al., 2018), knowledge mining (Yao et al., 2017), and ChatBot
ssistant systems (Suhaili et al., 2021). The word embedding
odels are attractive, as they capture semantically similar words

elated to a specific word in a document from a large-scale
ext dataset using co-appearance of words. Words with a similar
eaning are mapped to a similar location in the vector space

Mikolov et al., 2013) (e.g. ‘‘King’’-‘‘Man’’ + ‘‘Woman’’ = ‘‘Queen’’),
hich preserves correlations between words systemically (Sang
t al., 2020). Since gene symbols (e.g., NUP413) or identified
NP symbols (e.g., rs147843333) have literature data and these
enetic symbols can all be encoded as text data, the embedding
ectors of words in the related literature may provide significant
orrelations between the genetic symbols. However, the use of
ext data for SNP visualization has not been performed.

In general, well-trained neural networks can represent corre-
ations between data points to map higher-dimensional data to
ower-dimensional embedding vector space by preserving global
nd local structures of the data (Fuhrman et al., 2022). Conse-
uently, word embeddings that are trained using genetic sym-
ols and their associated literature-words have feasibility to cap-
ure local and global structures of high-dimensional genetic data
e.g., SNP) even though genetic and text data have different
odalities. Moreover, an embedding model can capture seman-

ic correlations between words. A literature-based embedding
odel representation has the potential to incorporate not only
enetic and SNP information but other important factors con-
ributing to diseases and provide textual explanations for each
enetic symbol. Since semantic text information improves model
nterpretability (Dong et al., 2017), the literature information
ncompassing explanations of genetic symbols can provide better
nderstanding of visualization results and may reveal hidden dis-
ase risks. Hence, it is critical to develop robust literature-based
isualization methods. visualization approach to uncover the dy-
amics of genetic data using literature text data with textual
nterpretability. For this purpose, we developed an unsupervised
iterature text-based neural network-based distribution projec-
ion (NNDP) for visualization of genetic data. Our NNDP approach
as designed so that: (1) it preserves both global and local struc-
ures of the SNP data, and (2) it can provide interpretable and
xplainable visualization results using textual information. The
extual information also enables the feasibility of incorporating
ther risk factors obtained from literature to visualization results.
For validation of the proposed NNDP, we designed a neural

etwork model called the literature embedding model, and com-
ared the literature embedding model-based NNDP to PCA (Jol-
iffe & Cadima, 2016), UMAP (McInnes et al., 2020), and random
rojection (RP) (Bingham & Mannila, 2001). We also compared
he literature-model-based NNDP against other NNDP variations
f the embedding models—Word2Vec (Mikolov et al., 2013),
lobal Vectors (GloVe) (Pennington et al., 2014), FastText (Bo-
anowski et al., 2017; Joulin et al., 2017), Embeddings from
anguage Models (ELMo) (Peters et al., 2018), Generative Pre-
rained Transformer 2 (GPT-2) (Radford et al., 2019), and A
ight Bidirectional Encoder Representation from Transformers
ALBERT) (Lan et al., 2020). For this purpose, we used a large

NP data set consisting of (a) dbGaP accession phs000279.v2.p1;

563
and (b) dbGaP accession phs000883.v1.p1 with race, myocardial
infarction (MI) event age groups, and sex categories as a genetic
dataset. We also collected literature data using SNP-linked gene
names from PubMed.

2. Related work

Visualization techniques are paramount to better understand-
ing of high-dimensional complex data (Wang et al., 2021). Ideally,
they should tackle high-dimensional data by reducing the di-
mension without compromising the dynamic structures of the
data.

One benefit of reducing the dimension should be reduction of
undesired noise as well (Cheng et al., 2022; Dong et al., 2022;
Spencer et al., 2020). A study (Dong et al., 2022) used PCA to
remove noise so that a graph neural network could be optimized.
Another study (Allaoui et al., 2020) used a different dimension-
reducing visualization approach, UMAP, to increase clustering
performance on image data. This study showed that the use of
UMAP increased the accuracy significantly (∼60%) when com-
pared to without UMAP. Data visualization techniques are also
widely used to better understand deep neural network structures
(Allen et al., 2021; De et al., 2015; Diaz-Papkovich et al., 2019;
Moon et al., 2019; O’Donoghue et al., 2018; Rauber et al., 2017).
PCA, t-SNE, and UMAP have been widely used to analyze the
variation of features generated by convolutional neural networks
(Fuhrman et al., 2022; Rauber et al., 2017). However, even though
visualization methods can provide an insightful understanding of
data, many visualization results are still not fully trustable (Huang
et al., 2022). Currently, knowledge graph methods have been
investigated for interpretable visualizations (Rožanec et al., 2022;
Shimizu et al., 2022). The embedded knowledge graph improved
the reliability of visualization results by integrating interpretable
information into data features (Deagen et al., 2022; Shimizu et al.,
2022; Tiddi & Schlobach, 2022; Zhang & Yao, 2022).

3. Proposed method

Many data visualization approaches such as PCA (Jolliffe &
Cadima, 2016) aim to estimate reduced dimension X ′

n×M when
the original high-dimensional matrix Xn×d is projected onto an
M-dimensional subspace using a matrix Ed×M , as shown in Eq. (1):

X
′

n×M = Xn×dEd×M (1)

In this paper, we propose to estimate Ed×M using literature
data to obtain reduced M-dimension X ′

n×M . Genetic entities such
as gene names and their associated diseases can appear with
other words (their co-apparent words). We hypothesize that the
correlations between genetic data points can be obtained us-
ing word-to-word correlations between genetic entities repre-
sented as text. Hence, we collected literature documents with
gene names from PubMed and trained a neural network model
to generate optimized Ed×M . The trained neural network embed-
ding model has the capacity to compute semantic correlations
between not only genetic entities but also words (Roy et al., 2018;
Yao et al., 2017); the embedding model was also used to vali-
date and interpret visualization results using semantic correlation
analysis. The details of the literature data collection, the literature
embedding model design, the literature-represented SNP data
creation, data visualization, and semantic correlation analysis are

described as follows:
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Fig. 1. Overall framework for genetic data visualization and analysis using literature.
Table 1
The number of published abstracts for each decade (1960s–2020s).
Years Gene name keyword

1960s 3
1970s 35
1980s 156
1990s 1515
2000s 11,893
2010s 96,146
2020s 170,362
N/A 911
Total 281,111

3.1. Overall framework

As shown in Fig. 1, the first step (a) is to create SNP lists
ith their associated gene name matching lists. In this step
e match SNPs and their associated gene names. Step (b) is
o collect abstract documents associated with each of the gene
ames garnered in step (a). Using the obtained document, we
uild a literature embedding model by computing the correla-
ions between gene names and associated words in the abstract
ocuments in step (c). We estimate Ed×M from the pre-trained

literature embedding model in step (d). In step (e) we determine
SNP data associated with gene names. SNP arrays in d rows of
Xn×d are matched with the SNP-associated gene name arrays in d
olumns of Ed×M . The inner product between the SNP data Xn×d
with Ed×M are computed in step (f), which results in a reduced
M-dimension X ′

n×M in step (g). Step (h) is to visualize the X ′

n×M
obtained in the (g). Using the pre-trained embedding model (c),
the final step (i) is to investigate semantic correlations in word
embeddings to validate SNP visualizations using given words’
cosine similarity. Step (i) supports understanding and analysis
of literature-represented SNP X ′

n×M-based visualization results in
step (h). These processes are all further detailed in the proceeding
sections.

3.2. Literature text data collection

We collected 281,111 published abstracts (published date—
from 1965 to 2021 January) using 19,264 human gene names
(e.g. gene name called TET3) from the PubMed database as shown
in Table 1. The 19,264 gene names were associated with identi-
fied 920,314 single nucleotide polymorphisms (SNPs) using db-
GaP accession phs000883.v1.p1. We extracted gene names from
the SNP lists using BioPython library with Python.3.7.1. To pre-
serve information concerning gene-to-gene correlations, we de-
fined the gene names and their associated SNP variant names
as unique entities, and they were labeled with upper cases with
the ‘‘#’’ symbol appended. All text was converted to lower case.
564
Unwanted words such as prepositions, subordinating conjunc-
tions, determiners, personal pronouns, possessive pronouns, wh-
adverbs (e.g., how, when, where, why), modals, comparative ad-
verbs, superlative adverbs, coordinating conjunctions, and ex-
istential there is/are were removed. An example is shown in
Table 2.

3.3. Literature embedding model

Using the literature data sets, we used a neural network model
motivated by the continuous-bag-of-word (CBOW) structure of
Word2Vec (Mikolov et al., 2013), which is one of the well-known
neural network models in the natural language processing field.
The CBOW is designed to predict the center word wt as the output
from a set of words using its context words {wt−k, . . . , wt+k} as
the input where t is a word location in a given document, and k is
a window size and a model input. The neural network structure
optimizes weight matrices that are fully connected with the input
and the output words, and the weight matrices learn semantic
correlations between words when the network is trained. More
details on Word2Vec are describe in Mikolov et al. (2013). We
modified the CBOW structure in this study to produce different
weight matrices to investigate better visualization approaches
using literature-represented SNP. Our model’s weight matrices
are used as Ed×M in Eq. (1) to produce a dimension-reduced SNP,
X ′

n×M .
Specifically, the model’s weight matrices are obtained by train-

ing a neural network to predict a search keyword (e.g., a gene
name wj as shown in Table 2(a)) using a context word set
{wt, . . . , wt+k} from collected documents (see Table 2(b)), where
t is a word location in a given document and k is a window size.
For example, consider a word set consisting of 16 words – obesity,
associated, cardiovascular, diseases, body, weight, caloric, intake,
organ, weight, lipid, profile, lipoprotein, lipase, #LPL, activity –
captured using the search keyword ‘‘LPL’’. All words are tokenized
into 16 word pieces. We start the training phases with a window
size k=4, thus, by starting at t=0, the first four words (obesity, as-
sociated, cardiovascular, diseases) are used to predict the search
keyword ‘‘#LPL’’. Subsequently, t increases by one until t=12 is
reached with the window containing the words ‘‘lipoprotein,
lipase, #LPL, activity’’.

Fig. 2 shows the structure of the neural network model with
the modified CBOW structure during model training. The x̂, h,
and ŷ are the input, hidden, and output layers, respectively. The
input and output layers are fully connected with two weight
matrixes—UN×M and VM×N . N is the vocabulary size for unique
words, M is the number of hidden layers, and K is the win-
dow size that defines the number of words that are used as
the input vector for each training step. Before model training,
we extract unique words from collected documents using all
gene names and tokenize all unique words. When we have N
number of unique words from documents, we obtain an N-sized
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Table 2
Examples of collected abstracts using search keywords.
Status (a) Search Keyword (b) Collected Abstract

Original TET3 Some of the environmental conditions that
lead to obesity are physical activity, alcohol
consumption, socioeconomic status, parent
feeding behavior, and diet. Interestingly,
some of these environmental conditions are
shared with neurodegenerative and
neurodevelopmental diseases.

Pre-processed #TET3 environmental conditions lead obesity physical
activity alcohol consumption socioeconomic
status parent feeding behavior diet
interestingly environmental conditions shared
neurodegenerative neurodevelopmental
diseases

Note: Changed words are bolded.
Fig. 2. Proposed literature model structure (modified CBOW is used as our literature embedding model). Related codes are available: https://github.com/JihyeMooon/
NDP_Visualization.
w
o
f
b
a
f
K

h

t

ocabulary of unique words {ŵ1, . . . , ŵN}. Each index of every
nique word, one-hot encodes each unit of both the input layer
x̂1, . . . , x̂N} and the output layer {ŷ1, . . . , ŷN} during the model
raining phase. For example, the unique word ‘associated’ in the
bove example of the sequence of words, is indexed with 2 in
he input vocabulary {x1, . . . , xN}, such that the 2nd column of
he input is designated as 1 and the others are assigned values
f zeros {x̂1, . . . , x̂N} = {0, 1, . . ., 0, 0}. Likewise, when the gene
ame ‘#LPL’ is indexed with j in the output vocabulary, the jth
olumn of the output layer is coded with 1 and the other columns
ith 0 (e.g., {ŷ1, . . . , ŷj, ŷN} = {0, 0, . . ., 1, 0}). For the case of four
ontext words consisting of ‘‘obesity, associated, cardiovascular,
isease’’, they are indexed as 0, 1, 2, and 3 with the gene name
‘#LPL’’ indexed with j, and the window size K = 4. Our model
reates four one-hot encoded input layers with the corresponding
 c

565
ord appearance index, as shown in Fig. 2. Note that only the
utput of this structure differs from the original CBOW, and
urther details for the CBOW structure without our gene-name-
ased output can be found in Mikolov et al. (2013). The model
verages the vectors of the four input layers that represent the
our context words, and computes an inner-product between the
-averaged input vector and the weight matrix U:

=
1
K
UT (x̂1, +x̂2, + · · · + x̂K )

=
1
K

(
uwt + uwt+1 + · · · + uwt+K

)T (2)

In Eq. (2), K is the number of context words (window size), x̂ is
he input layer, {K1, . . . , K4} denote the index locations that are
oded with either 1 or 0, {w , . . . , w } are the context words
t t+k

https://github.com/JihyeMooon/NNDP_Visualization
https://github.com/JihyeMooon/NNDP_Visualization
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e.g., ‘‘obesity, associated, cardiovascular, disease’’), t is a word
ocation in a given document, uw is the input vector of a word
, and h is the hidden layer. To predict the gene name ‘‘#LPL’’

that is indexed with j, we compute the inner product between
he hidden layer and jth row of the matrix V :

j = vT
wj
h (3)

In Eq. (3), vwj is the output vector linking to the gene name
‘#LPL’’ that is located in the jth row of the matrix V of M×N size.
sing these weights, we compute a score zj for each gene name
ndexed as the jth in the vocabulary. Then we obtain the posterior
istribution of words, a multinomial distribution using a softmax
unction, using Eq. (4):(

wj|wt , . . . , wt+k
)

= ŷȷ =
exp

(
zj
)∑N

i′=1 exp
(
zj′

) (4)

here ŷȷ is the output of the jth column unit in the output layer.
y considering Eqs. (2)–(3), Eq. (4) is reformulated as:(
wj|wt , . . . , wt+k

)
=

exp
(
vT

wj
·

1
K

(
uwt + uwt+1 + · · · + uwt+K

)T)
∑N

i′=1 exp
(
vT

wj′
T ·

1
K

(
uwt + uwt+1 + · · · + uwt+K

)T) (5)

In Eq. (5), uw is the input vector for a word wt , and vj is the
utput vector for a gene name wj that is indexed as j in the
ocabulary. Since the input and output layers are fully connected
ith U and V, the model structure aims to optimize the U and
by predicting the output ŷj (gene name wj) using the average

ˆ (context words {wt , . . . , wt+k}). The structure maximizes the
verage log probability of the word sets

(
wj|wt , . . . , wt+k

)
to

redict their associated gene name wj, which can be defined as:

1
T

T−k∑
t=n

log p(wj|wt , . . . , wt+k) (6)

In Eq. (6), T and t are the number of words and a word location
in a given document, respectively, and k is a window size used for
each training step. The model iterates until all words and search
keywords are all accounted for as the input and output vectors,
respectively. The process provides a vast distributed representa-
tion for each gene wj using word correlations in the collected
abstract documents without any prior knowledge of the genotype
data. With the context words, word vectors that appear in similar
contexts get aligned closer to each other by predicting the same
output (e.g., a gene name) within the UN×M matrix space. With
our structure, UN×M and VM×N represent different distributions
for each word—systemically, the UN×M is formulated by all words,
including gene names that are used as the input vector, whereas
VM×N is represented by only the gene names that are used as
the output vector. Consequently, the UN×M matrix provides better
correlations between gene names that were obtained by the
word–word appearances than does the VM×N matrix. To validate
our method, we used UN×M and V ′

N×M (a transpose of VM×N ) as
Ed×M .

3.4. Literature-represented SNP data

To use the weight matrix (UN×M or V ′

N×M ) with Xn×d, we
extract the sub-weight matrices Ud×M and V ′

d×M from N × M
matrixes and their d-rows are matched with d-columns of Xn×d,
where d is the SNP gene name matched index and M is the
dimension. The sub-weight matrix (Ud×M or V ′

d×M ) is normalized
by using the Frobenius norm (Golub & Van Loan, 2013). Using the
normalized matrix, our NNDP takes the inner product between

Xn×d with the sub-weight matrix (which can be either Ud×M or

566
V ′

d×M ) to produce X ′

n×M = Xn×dEd×M as shown in Eq. (1). Ed×M
can be either Ud×M or V ′

d×M and Ed×M projects the original matrix
Xn×d onto an M-dimensional subspace, which leads to transfor-
mation from d-dimensional original data Xn×d to M-dimensional
X ′

n×M . Note that the dimension M of Ed×M is defined as the
embedding model’s dimension and the dimension M determines
the dimension of X ′

n×M . In this paper, we designate X ′

n×M with
Ud×M (input representation) as NNDP-IN and with V ′

d×M (output
representation) as NNDP-OUT.

3.5. Visualization using literature-represented SNP

We proposed a data visualization approach using our NNDP,
and compared these to other popular visualization models such
as the PCA and UMAP. Since NNDP provides a fixed dimension M,
it can be combined with either PCA or UMAP on X ′

n×d (literature-
represented SNP data) for data visualization. We term these vari-
ous combinations of using NNDP with either PCA or UMAP as the
following: NNDP-IN-PCA, NNDP-IN-UMAP, NNDP-OUT-PCA, and
NNDP-OUT-UMAP.

3.6. Evaluation of semantic correlations in word embeddings

Since our dimensionality reduction and visualization
approaches are based on semantics correlations between words
provided in UN×M and V ′

N×M (a transpose of VM×N ) matrices, we
validate and interpret our methods using textual semantic analy-
sis involving the embedding matrices. These pre-trained matrices
provide an N-sized vocabulary of unique words {ŵ1, . . . , ŵN}

with M-dimensional unique embedding vectors. Cosine similar-
ity between embedding vectors measures semantic correlations
between them. The cosine similarity-based analysis is a common
evaluation to assess the quality of model in the natural language
processing field (Wang et al., 2019). We validate and interpret
literature-based visualization using cosine similarity scores be-
tween a query word vector and other embedding vectors in
UN×M or V ′

N×M . Since our embedding vectors are normalized (see
Section 3.4), the similarity is computed as follows:

Similarity
(
vi, vj

)
= |vi|

⏐⏐ vj
⏐⏐ cosθ = vT

i vj (7)

With Eq. (7), we calculate similarity scores between the two-
word vectors vi and vj in the M-dimensional embedding space.
The vector v is obtained from UN×M or V ′

N×M . The cosine similarity
metric ranges from −1 to 1, with −1 representing the most
different, 0 as no correlation, and 1 as the most similar between
data points. Using query words (i.e., ‘‘heart’’), Eq. (7) calculates
similarities of embedding vectors of the query and all words in
the unique vocabulary of UN×M or V ′

N×M , and sorts the words
associated with the highest cosine similarity values. When the
embedding model is well-trained, the captured words show se-
mantic correlations to query word (i.e., a captured word ‘‘cardiac’’
for a query ‘‘heart’’). The similarity analysis was used to under-
stand and validate visualization results along with identifying
semantic correlations between words.

4. NNDP variations using other embedding models

We also investigated our NNDP literature text-based visualiza-
tion method using other embedding models. For the dimension-
reduced X ′

n×M = Xn×dEd×M , the Ed×M can be replaced with any
word embedding models for the purpose of SNP data visualiza-
tion. Hence, not only did we compare our NNDP method with
traditional visualization methods – PCA, UMAP, and RP – but
also, we compared literature-model-based NNDP (NNDP-IN and

NNDP-OUT) against other NNDP variations of the embedding
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odels: the original Word2Vec, GloVe, FastText, ELMo, GPT-2,
nd ALBERT.
The word embedding models are categorized into two groups:

onventional word embedding (Word2Vec, GloVe, and FastText)
and contextual word embedding (ELMo, GPT-2, and
LBERT). The former generates context-independent word em-
eddings while the latter generates context-dependent word
mbeddings. For example, the word ‘‘watch’’ can have different
eanings depending on the context, such as: ‘‘I like to watch

television’’ vs. ‘‘I am wearing a smart watch’’. While the con-
ventional embedding models – Word2Vec, GloVe, and FastText –
consider different uses of ‘‘watch’’ to be the same, the contextual
embedding models – ELMo, GPT-2, and ALBERT – capture the
different meanings of ‘‘watch’’ in each sentence by consider-
ing its context. We investigated how the context-independent
and context-dependent embedding representations work for this
NNDP approach.

The Word2Vec, GloVe, FastText, ELMo, GPT-2, and ALBERT-
based NNDP were defined as NNDP-Word2Vec, NNDP-GloVe,
NNDP-FastText, NNDP-ELMo, NNDP-GPT-2, and NNDP-ALBERT.
When these embedding models were used with either PCA or
UMAP, the following naming notations were used: NNDP-
Word2Vec-PCA, NNDP-Word2Vec-UMAP, NNDP-GloVe-PCA,
NNDP-GloVe-UMAP, NNDP-FastText-PCA, NNDP-FastText-UMAP,
NNDP-ELMo-PCA, NNDP-ELMo-UMAP, NNDP-GPT-2-PCA, NNDP-
GPT-2-UMAP, NNDP-ALBERT-PCA, and NNDP-ALBERT-UMAP.

4.1. Literature data processing for NNDP variants

For the other embedding models, gene names and their as-
sociated sentences are merged into a sentence to be used as
a training corpus to maximize the correlations between gene
names and associated words. For example, a sentence ‘‘some of
the environmental conditions that lead to obesity are physical
activity and alcohol consumption’’ was obtained using a gene
name ‘‘#TET3’’ so we created the merged: ‘‘#TET3 some of the
environmental conditions that lead to obesity are physical activity
and alcohol consumption’’. The merged sentences were used for
the training corpus of the other embedding models—Word2Vec,
GloVe, FastText, ELMo, GPT-2, and ALBERT.

4.2. Description of other embedding matrix extraction models

This subsection demonstrates how to extract embedding
matrices from each of the six compared embedding models:
NNDP-Word2Vec, NNDP-GloVe, NNDP-FastText, NNDP-ELMo,
NNDP-GPT-2, and NNDP-ALBERT. All extracted embedding matri-
ces were normalized via the Frobenius norm (Golub & Van Loan,
2013).

4.2.1. NNDP-Word2Vec
Word2Vec is the original version of our literature embedding

model (Mikolov et al., 2013). It is a simple neural network con-
sisting of an input layer, a hidden layer, and an output layer.
The original Word2Vec predicts a center word using word con-
texts (CBOW structure) or word contexts using a center word
(Skip-gram structure) while our embedding model predicts a
gene name using a word context from an associated document.
The Word2Vec structure allows participation of all words in the
input and output while our literature embedding structure al-
lows participation of words only in the input. More details of
Word2Vec are described in Mikolov et al. (2013). Since our model
was modified from the CBOW structure of Word2Vec, we used
CBOW structure for NNDP-Word2Vec in this work. We used the
d-dimensional sub-weight matrix of Word2Vec’s input matrix as
567
Ed×M , where d is the matched SNP gene name index and M is the
dimension.

4.2.2. NNDP-GloVe
GloVe is designed to address the local-context-biased rep-

resentations of Word2Vec (Pennington et al., 2014). Word2Vec
generates embedding vectors using only local contexts (Pen-
nington et al., 2014; Wendlandt et al., 2018). Generally, GloVe
and Word2Vec are similar since both models compute word-
to-word co-occurrences using word contexts. However, GloVe
also uses word-to-word global co-occurrence counts from the
entire training corpus. GloVe’s objective function specifies that
the inner product between the center word embedding and
the context word embedding should equal the logarithm of the
words’ probability of co-occurrence (Pennington et al., 2014).
Since GloVe’s structure involves both global and local word-to-
word co-occurrence probabilities, its embedding space is more
stable than that of Word2Vec (Mimno & Thompson, 2017; Wend-
landt et al., 2018). We used the d-dimensional sub-matrix of the
sum matrix of the center and context embedding matrices as
Ed×M . The sum of two embedding matrices is the in the GloVe
library provided by (Pennington et al., 2014).

4.2.3. NNDP-FastText
Fasttext is designed to add morphological information into

unique-word-based representations of Word2Vec to represent
the relationships between characters per word. For example,
words such as ‘‘genes’’ and ‘‘genetic’’ are different forms of the
word ‘‘gene’’. The relationship of the two words ‘‘boy’’ and
‘‘friend’’ to create the word ‘‘boyfriend’’ are the same as the
relationship of the two words ‘‘girl’’ and ‘‘friend’’ to create the
word ‘‘girlfriend’’. Since Word2Vec and GloVe only consider the
unique-word-based relationships as described in 4.2.1 and 4.2.2,
they do not capture the internal information for each word. To
obtain the morphological information, FastText suggests a sub-
word n-gram approach to obtain the order relationship between
characters in each word: for the word ‘‘subword’’, the FastText
model adds two characters ‘‘<’’ and ‘‘>’’ to create <subword>.
Then n-gram information is computed to capture the relationship
between characters. If 3-gram information is selected, all sequen-
tial information for each sub-word is paired as three characters:
‘‘<su’’, ‘‘sub’’, ‘‘ubw’’, ‘‘bwo’’, ‘‘wor’’, ‘‘ord’’, ‘‘rd>’’. The correlations
between characters are added into word embedding vectors
while the FastText model trains. We used the d-dimensional
sub-matrix of the FastText embedding matrix as Ed×M .

4.2.4. NNDP-ELMo
ELMo generates contextual word embedding vectors by pre-

dicting next or prior words via left-to-right and right-to-left
contexts for each given sentence, using a bidirectional long short-
term memory network (LSTM) (Peters et al., 2018) with char-
acter convolutional neural networks (CNN). The character CNNs
capture character n-gram information by applying multiple con-
volutional layers on characters in each word, and the bidirec-
tional LSTM assigns each word a representation based on its
context. The bidirectional LSTM looks at left-to-right and right-to-
left contexts, which enables it to capture uses of words varying
by different contexts. With these bi-directional representations,
ELMo produces different word embedding representations for
each word depending on its contexts. Since gene name is an entity
term that does not change meaning with its context, we used
the d-dimensional sub-matrix extracted from the pre-trained M-
dimensional contextualized representation for each gene name as
E .
d×M
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.2.5. NNDP-GPT-2
GPT-2 with a causal language modeling generates contextual

ord embedding vectors by predicting the next word using prior
ords in a given sentence set with deep bidirectional transformer
ecoders (Radford et al., 2019). The special feature of GPT-2 is
yte Pair Encoding (BPE) tokenizer. BPE (Radford et al., 2019)
eplaces frequent word sequences as word level tokens and infre-
uent symbol sequences as character level tokens, which results
n reduction of vocabulary size. GPT-2 is similar to ELMo in that
oth models capture contextual information for each word per
ts context. However, GPT-2 captures the contexts using unidi-
ectional representations via the state-of-the-art neural network
ransformer decoder instead of bidirectional LSTMs. Since the
idirectional LSTM predicts prior/future information sequentially,
t is biased to local contexts. However, GPT-2’s self-attention
echanism enables capturing all contexts equally for each word

n each given sentence. Since the GPT structure generates unidi-
ectional representations by predicting the next word using the
rior words, GPT structures have been widely used for text gen-
ration tasks. We used the d-dimensional sub-matrix extracted

from the M-dimensional context-dependent representations (the
last embedding matrix of GPT-2) for each gene name as Ed×M .

4.2.6. NNDP-ALBERT
ALBERT with a masked language modeling produces contex-

tual word embedding vectors by predicting sentence orders and
randomly masked words with deep bidirectional transformer en-
coders (Lan et al., 2020). Even though both ALBERT and GPT-2
use the transformer structure, ALBERT differs from GPT-2 as
it predicts randomly masked words using all nearby words in
each sentence using the transformer encoder while GPT-2 pre-
dicts the next words using prior words autoregressively with the
ransformer decoder. One of the special features of ALBERT is
he word-piece tokenizer: the tokenizer creates vocabulary using
ub-word units and ALBERT generates embedding vectors based
n the sub-word vocabulary (Song et al., 2021). For example,
he word ‘‘colorless’’ is decomposed to ‘‘color’’ and ‘‘##less’’ by
he word-piece tokenizer. Since the tokenizer could also decom-
ose gene name into some pieces, we averaged the word-piece
mbedding vectors to create a complete d-dimensional gene-
ame sub-matrix Ed×M . For example, a gene name #GYPC is
ecomposed to ‘#’, ‘##gyp’, and ‘##c’, then we averaged all
f the three-piece-embedding vectors to create a unique word
mbedding vector for ‘#GYPC’.
To examine the effect of different semantic representations on

ur NNDP approach, we computed two different d-dimensional
ene-name sub-matrices Ed×M using a token embedding matrix
ither alone or as the sum of token and positional embedding ma-
rices for the context-dependent and context-independent cases,
espectively. The NNPD approach using a context-dependent em-
edding matrix (using the sum of token and positional embedding
atrices) of ALBERT we called NNDP-ALBERT[d], and the NNDP
pproach using a context-independent embedding matrix (using
nly token embedding) of ALBERT we called NNDP-ALBERT[i].

. SNP database

.1. Data description and encoding

We used SNP data from two case-control study datasets as
n×d: (a) dbGaP accession phs000279.v2.p1 which contains MI
vents for two age groups (512 subjects of young MI event
ge group, 206 subjects of old MI event age group), and five
ace groups (552 European, 145 African American (Black), 14
ispanic, 14 others, and 2 Unknown), and (b) dbGaP accession

hs000883.v1.p1 for two sex group (1331 male, 723 female). The

568
ataset (a) contains 727 subjects and identifies 401,454 SNPs
or the five race groups and two MI event groups. The event
ge is defined as the subject’s age when MI occurred. Since the
tatistical differences between the two age groups <50 and ≥50
t the first incident of MI are significant regarding the family
istory of MI (Ambroziak et al., 2020), we defined the young MI
vent group as age ranges from 20 to 50 and the old MI event
roup as age ranges from above 50 to 60. The dataset (b) contains
ata from 2054 subjects (1331 male, 723 female) with 920,314
NPs, and MI case-control labels (1030 case, 1024 control). Those
roups with and without MI shared the same risk factors for MI
t the baseline examination. However, the study did not conduct
follow-up study to examine if the control group’s subjects had
I events, hence, we only used sex category for the database (b).
The SNP can be encoded by three possible values consisting

f homozygous for reference, heterozygous, and homozygous for
lternate. The homozygous for reference is where the two base
airs of SNP are the same and found in the reference genome;
he heterozygous is where the two base pairs are different; and
omozygous for alternate is where the two base pairs are not
ound in the reference genome (Soumare et al., 2021). By follow-
ng previous works’ SNP labeling strategy for machine learning
Monk et al., 2021; Patel et al., 2015), we encoded the data
omponents as ordinary values with four criteria: if the SNP
ariant is homozygous for the reference allele, it is labeled as 0.
f the SNP variant is heterozygous for reference and alternative
lleles, it is labeled as 1. If the genotype is homozygous for the
lternate allele, it is labeled as 2. If there is missing data for a
articular sample, it is labeled as −1.

.2. SNP data selection

We excluded SNPs when (1) the percentage of missing sam-
les was > 5%; (2) they have the same value for all subjects
i.e., all subjects have 0 value (homozygous for reference) for
n SNP); (3) they have no matched gene names (some SNPs do
ot have gene references); (4) SNP-matched gene names have
o published abstracts in PubMed. When these exclusions were
pplied, the number of SNPs reduced from 401,454 to 385,706
or the dataset (a) and from 920,314 to 239,027 for the dataset
b). The SNP data were segmented into 80% for training and
0% for testing. We selected race, MI event age group, and sex-
elated SNPs based on the training data set. The data selection
s to evaluate our proposed model’s performance in capturing
he local and global structure estimation. The quality-control
rocedure is the most common approach to remove unwanted
NPs for specific topics such as population and disease risk (Gola
t al., 2020). For SNP selections based on the training data, we
elected a Q*128 dimensional SNP set where Q=50 using a ran-
om forest classification model developed by scikit-learn v. 0.23.2
Pedregosa et al., 2011) with Python 3.7. We used a grid search
lgorithm provided by scikit-learn for the random forest model.
e obtained 6400 race-related SNPs, 6400 MI event age-related

NPs from (a) dbGaP accession phs000279.v2.p1, and 6400 sex-
elated SNPs from (b) dbGaP accession phs000883.v1.p1 (Q*128
here Q=50) for training and testing datasets. The segmented
raining and testing datasets were used to validate visualization
nd classification performance. We also investigated classification
nd data visualization performance using Q=100, 150, 200, and
50 in the Appendix to assess performance depending on Q*128
imension (Q times dimensionality reduction).
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. Method validation

In this paper, we aimed to unravel global and local structural
ynamics of the genetic data together with evaluations of se-
antic correlations in literature word embeddings. We validated
ur NNDP-based methods using both qualitative and quantita-
ive evaluation methods. Global structure represents common
nd general features that many individuals share, including their
enotypes such as sex and race, while the local structure repre-
ents certain diseases. We used race (European, Black, Hispanic,
ther, and unknown), MI event age groups (young MI event age
roup, old MI event age group), and sex (male, female) infor-
ation for the visualization analysis that was the qualitative
valuation, and classification tasks as the quantitative evaluation.
e analyzed whether the model is interpretable and contain
ther information that could be visualized, and quantified using
emantic analysis. The generalizability of our method by using
issing data simulation was also evaluated.
For this purpose, we validated our approach using details

rovided in the following four subsections: 6.1. Data visualization,
.2. Evaluation of semantic correlations in word embeddings,
.3. Classification with dimensionality reduction, and 6.4. Missing
ata simulation.

.1. Data visualization

We visually assessed SNP data separations between classes as
qualitative evaluation. We defined distinct separations between
ifferent classes for each category (race, MI event age, and sex)
s a metric of good visualization quality. In order to investigate
he effects of literature information on MI risks in details, we
nalyzed how MI event age group-related clusters are different
or each race group using the dbGaP accession phs000279.v2.p1
ataset that was described in Section 5. To reduce the complex-
ty of the analysis, we used five classes (Young European MI,
ld European MI, young Black MI, old Black MI, and others) by
ombining two labels: race (European, Black, Hispanic, other, and
nknown) and MI event age groups (young group ranges from 20
o 50 and old group ranges from above 50 to 60).

.2. Evaluation of semantic correlations in literature word embed-
ings

We investigated interpretable visualizations via semantic cor-
elations in literature word embeddings. Using Eq. (7), we com-
uted all similarities between each query and all vocabulary
ords. We sorted top-10 similar words from the query and
nalyzed semantic correlations between them. The query vectors
hat consisted of more than two words (i.e., ‘female + male’) were
veraged. We used ‘heart’, ‘african + american’, ‘european + amer-
can’, and ‘female + male’ as queries to interpret the visualization
esults semantically.

.3. Classification with dimensionality reduction

For quantitative evaluation, we used the literature-
epresented SNP data X ′

n×M (also called dimension-reduced SNP
data) as the input to machine learning (ML) models which con-
sisted of support vector machine (SVM) with linear, poly, and
radial basis functions (RBF), logistic regression (LR), and multi-
layer perceptron (MLP). For classification performance evalua-
tions, we used accuracy, sensitivity, specificity, and geometric
mean score (G-mean). The G-mean is the squared root of the
product of sensitivity and specificity. We also conducted statis-
tical hypothesis testing with a two-sided p-value (Foody, 2009)
to determine a significant difference between dimension-reduced
data and the original data. The difference between a pair of
models’ performance was considered significant if the p-value ≤

0.05 (Devore, 2000) for two-sided 5% significance level.
569
6.4. Missing data simulation

To demonstrate generalizability of the proposed approach, we
considered missing SNP data. The missing data environment was
simulated by replacing 10% of the SNP data with −1. Specifically,
for the race and MI event age group categories, 465,280 arrays
were replaced with −1 from 4,652,800 arrays derived from 727
subjects and 6400 SNPs. For the sex category, 1,314,560 arrays
were replaced with −1 from 13,145,600 arrays obtained from
054 subjects and 6400 SNPs. We analyzed the generalizability
f the model using both qualitative and quantitative evaluations
hat are described in Sections 6.1, 6.3.

.5. Model comparison

An unsupervised learning approach involves reducing the di-
ension of the data and visualizing the data in two-dimensional
pace. To compare our data visualization approach with other
opular dimensionality reduction methods, we examined PCA
Jolliffe & Cadima, 2016), UMAP (McInnes et al., 2020), and RP
Bingham & Mannila, 2001). RP projects the original
igh-dimensional data matrix Xn×d onto a low-dimensional sub-

space using a random distribution matrix Ed×M (e.g. Gaussian)
and the inner product between the two matrices formulated as
XRP
n×M = Xn×dEd×M . The obtained XRP

n×k preserves the distance
between data points of Xn×d onto lower-dimensional space based
on the Johnson–Lindenstrauss lemma theory (Johnson, 1984). We
used the M-dimensional Gaussian distribution Ed×M , where M is
128 for RP (Egecioglu et al., 2004). For classification tasks (quan-
titative evaluation) for all methods (NNDP-IN, NNDP-OUT, NNDP-
Word2Vec, NNDP-GloVe, NNDP-FastText, NNDP-ELMo, NNDP-
GPT-2, NNDP-ALBERT, PCA, UMAP, and RP), the data dimension
was reduced from 6400 to 128. The dimension-reduced SNP data
(termed the literature-represented SNP for our method) were
used as the input of ML models. For visualization of the data
for all methods, we reduced the data dimension to 2-D. For
example, PCA and UMAP visualized the entire 6400-dimensional
SNP data to 2-D. Our NNDP method and RP have a fixed di-
mension M by Ed×M . Hence, our NNDP and RP were visualized
using PCA and UMAP after the data dimension was reduced to
128. These various combinations of using NNDP and RP with
either PCA or UMAP were termed the following: NNDP-IN-PCA,
NNDP-IN-UMAP, NNDP-OUT-PCA, NNDP-Word2Vec-PCA, NNDP-
GloVe-PCA, NNDP-FastText-PCA, NNDP-ELMo-PCA, NNDP-GPT-
2-PCA, NNDP-ALBERT-PCA, NNDP-OUT-UMAP, NNDP-Word2Vec-
UMAP, NNDP-GloVe-UMAP, NNDP-FastText-UMAP, NNDP-ELMo-
UMAP, NNDP-GPT-2-UMAP, NNDP-ALBERT-UMAP, RP-PCA, and
RP-UMAP.

7. Model training and visualization

7.1. Literature embedding model training

We trained our embedding model with the dimension of 128
using 281,111 published abstracts. For the hyper-parameters, we
used negative sampling of 64, which is an alternative to the
hierarchical softmax function (Mikolov et al., 2013), a minimum
word count of 4, a window size of 4 (to capture 4 context
words), an epoch of 30, and a learning rate of 1.0 with a gradient
descent optimizer. The above-noted epoch size was chosen since
the embedding models remained stable until epoch 30 (Borah
et al., 2021), and the learning rate was chosen since it is the
most widely used for embedding model training (Amalia et al.,
2020; Dürrschnabel et al., 2022; Kowsher et al., 2022; Kuyumcu
et al., 2019). The embedding model was trained using Python
3.7 with Tensorflow ver. 1.18.3 (Abadi et al., 2016). The number
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Fig. 3. Training losses at each epoch for the literature embedding model.

of unique vocabulary elements was 241,315 consisting of 221,
789 unique words and 19,526 gene names. Gene names were not
excluded from the training corpus, regardless of their frequency
count being less than 4. The training loss value for each epoch for
the model is shown in Fig. 3.

7.2. Other embedding models’ training

In this paper, we trained six embedding models—Word2Vec,
GloVe, FastText, ELMo, GPT-2, and ALBERT. These models were
trained to provide 128-dimensional embedding vectors.

Conventional word embeddings: For the hyper-parameters
of Word2Vec, we used CBOW structure and a window size of 2
(to capture 4 context words) with the same hyper-parameters
used in our embedding model, which are described in Section 7.1.
Word2Vec was trained for 30 epochs using Python 3.7 with
genism ver. 4.2.0. GloVe was trained using a window size of 2 and
a minimum word count of 4 and the default hyper-parameters
consisting of symmetric context, alpha of 0.75, and x_max of
100.0 with GloVe ver.1.2 library, C (Pennington et al., 2014).
FastText was trained based on CBOW structure using a window
size of 2, a minimum word count of 4, with 128 dimension and
default hyper-parameters as noted in previous work (Bojanowski
et al., 2017) using FastText library. The hyper-parameter was
designed to account for character 3–5 gram. For all word embed-
ding models, gene names were retained in the training corpus,
irrespective of their frequency count being less than 4. Since these
conventional word embedding models are trainable with CPUs,
all conventional word embeddings were trained using Intel(R)
Xeon(R) E- 2246G CPU @3.60 GHz, and 32 GB memory.

Contextual word embeddings: Since all conventional embed-
ding models are designed to provide 128 embedding vectors in
this work, the structures of ELMo and GPT-2 were adjusted to
provide 128 embedding vectors. Since the original ELMo provides
1024 embedding vectors by concatenating 512-dimentional two-
layer bidirectional LSTMs of 4096 units, our ELMo model was
adjusted to provide 128 embedding vectors by concatenating 64-
dimensional two-layer bidirectional LSTMs of 1028 units. Since
the representation dimensions of the adjusted LSTMs are 8 times
smaller than the dimensions of the original ELMo’s LSTMs, the
total number of character n-gram convolutional filters was also
reduced 8 times (from 2048 to 256). ELMo was trained for 10
epochs using the default hyper-parameters noted in the previous
work (Peters et al., 2018) with 256 batch size using a Tesla-T4
GPU with Tensorflow ver. 2.12.0, Python 3.9.

Since the default embedding size of GPT-2 is 768 (small ver-
sion of GPT-2) as noted in the previous work (Radford et al.,
2019), the GPT-2 structure was also adjusted to produce an em-

bedding size of 128. The number of attention heads was 8 and

570
each attention head size was 16 resulting in embedding size
of 128. The GPT-2 model was trained using the following pa-
rameters: a maximum sequence length of 512, vocabulary of
52,256, embedding size of 128, the number of attention heads
of 8, and the number of hidden layers of 12 with 18 batch size
with the default hyper-parameters of small GPT-2 provided by
HuggingFace library (Wolf et al., 2020) using a Tesla T-4 GPU with
Pytorch 1.13.1, Python 3.9.

Since the original ALBERT is designed to provide 128 embed-
ding vectors, our ALBERT model was trained using the default
hyper-parameters of the original ALBERT-base structure: learning
rate of 0.00176 (LAMB optimizer), number of training steps of
125,000, vocabulary of 30,000, maximum sequence length of
512, embedding size of 128, hidden size of 768, the number of
attention heads of 12, and the number of hidden layers of 12
with 128 batch size. The details for the ALBERT-base’s hyper-
parameters are described in Lan et al. (2020). The ALBERT model
was trained using eight Google Cloud TPU V3s with TensorFlow
ver.1.15, Python 3.7 (Abadi et al., 2016).

7.3. Classification model training and validation

The SNP data were segmented into 80% for training and 20%
for testing. Dimension-reduced SNP data were created via NNDP-
IN, NNDP-OUT, NNDP-Word2Vec, NNDP-GloVe, NNDP-FastText,
NNDP-ELMo, NNDP-GPT-2, and NNDP-ALBERT, PCA, UMAP, and
RP, and we trained all classifiers using the literature-represented
/dimension-reduced SNP data for the race, MI event age groups,
and sex classifications. We validated NNDP using the 5-fold cross
validation for the classification task. For the 5-fold cross valida-
tion, the performance on the five testing data sets was averaged.
We conducted data standardization before the dimensionality
reduction tasks to prevent biases of the feature values.

Since our NNDP approach projects data onto a 128
-dimensional space, the other compared approaches – PCA, UMAP,
and RP – also used the same dimension. We conducted the PCA
and UMAP using scikit-learn v. 0.23.2 (Pedregosa et al., 2011)
with Python 3.7. The hyper-parameters of those models were
provided by the default values of scikit-learn. The mean and
standard deviation of Gaussian distribution for RP were defined
as 0 and 1, respectively. The five ML models: SVM (linear, poly,
and RBF kernels), LR, and MLP were trained using scikit-learn
v. 0.23.2 (Pedregosa et al., 2011) with Python 3.7 with grid
search algorithms to select the best machine learning models.
The final performance on the test data was selected based on
the best accuracy during model training. For SVM and LR, the
final hyper-parameters were selected from {1e−5, 1e−4, 1e−3}
for ‘tol’ and {0.1, 1.0} for ‘C.’ For MLP, the hyper-parameters
were selected from {(100), (100,100), (100, 100, 100)} for ‘hid-
den_layer_sizes’ and {0,01, 0,01, 0,001} for ‘learning_rate_init.’
Other hyper-parameters of these models were set by the default
values provided by scikit-learn.

7.4. SNP visualization

We conducted data visualization on race, MI event age, and
sex-related SNP datasets. NNDP-based SNP visualization was im-
plemented by using PCA and UMAP after NNDP operation (NNDP-
PCA, NNDP-UMAP) on the SNP data set. The dimension of the
NNDP embedding model was 128, so the input size of each PCA
and UMAP was 128. The output size of NNDP-PCA and NNDP-
UMAP was 2, for 2-D visualization. To validate our NNDP-based
data visualization, we also conducted PCA, UMAP, RP-PCA (PCA
operation after RP), and RP-UMAP (UMAP operation after RP).
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Fig. 4. Visualization result using NNDP methods (NNDP-IN-PCA, NNDP-IN-UMAP, NNDP-OUT-PCA, NNDP-OUT-UMAP for race (a, d, g, j), MI event age group (b, e, h,
k), and sex (c, f, i, l) categories.
8. Results and analysis

To validate our NNDP-based methods objectively, we exam-
ined other popular dimensionality reduction models, namely,
PCA, UMAP, and RP on the original 6400-dimensional SNP data for
both visualization and classification tasks. We analyzed all visual-
ization and classification results with the following comparison:
(1) NNDP-IN and -OUT vs. PCA, UMAP, and RP, (2) NNDP-IN and
OUT vs. NNDP-Word2Vec, -GloVe, -FastText, -ELMo, -GPT-2,
nd -ALBERT.
Our NNDP-based methods (NNDP-IN, NNDP-OUT, NNDP-
ord2Vec, NNDP-GLoVE, NNDP-FastText, NNDP-ELMo, NNDP-
PT-2), and NNDP-ALBERT (ALBERT[d] and ALBERT[i]) and RP
educed the dimension of each 6400-dimensional SNP data set
o 128 for the classification task (quantitative evaluation), then
e applied PCA and UMAP on the dimension-reduced NNDP and
P outputs for visualization (qualitative evaluation). Note that
istribution projection methods including NNDP and RP reduce
he data dimension depending on the distribution Ed×M ’s size
o form X ′

n×M = Xn×dEd×M , thus, we combined NNDP and RP

with other visualization models such as the PCA and UMAP.

571
The NNDP and RP visualization methods are named NNDP-IN-
PCA, NNDP-OUT-PCA, NNDP-Word2Vec-PCA, NNDP-GloVe-PCA,
NNDP-FastText-PCA, NNDP-ELMo-PCA, NNDP-GPT-2-PCA, NNDP-
ALBERT-PCA, NNDP-IN-UMAP, NNDP-OUT-UMAP, NNDP-
Word2Vec-UMAP, NNDP-GloVe-UMAP, NNDP-FastText-UMAP,
NNDP-ELMo-UMAP, NNDP-GPT-2-UMAP, NNDP-ALBERT-UMAP,
RP-PCA, and RP-UMAP. PCA and UMAP can also be used to reduce
the dimension of each 6400-dimensional SNP data set to 128 for
classification task and 2 for visualization tasks.

8.1. Data visualization results

We show in Fig. 4 and Figs. 6–8 our approach for data visu-
alization on X ′

n×M estimated via the NNDP-based methods (Fig. 4
is for NNDP-IN and -OUT, Fig. 6 is for NNDP-Word2Vec, -GloVe,
and -FastText, Fig. 7 is for NNDP-ELMo, -GPT-2, and Fig. 8 is for
NNDP-ALBERT[d] and -ALBERT[i]), and the traditional approaches
based on UMAP and PCA without data transformation (e.g., Xn×d))

in Fig. 5.
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Fig. 5. Visualization results using other methods (basic PCA/UMAP, RP-PCA, RP-UMAP) for race, MI event age group, and sex categories.
.1.1. NNDP-IN and -OUT vs. PCA, UMAP, and RP
In Fig. 4, we show 2-D visualization of clustering based on the

pplication of both PCA and UMAP on the NNDP-IN data (the first
wo rows) consisting of three categories: race (left column), MI
vent age group (middle column), and sex (right column). The
ame procedures are also used for NNDP-OUT (the last two rows)
n Fig. 4. In Fig. 5, we show 2-D visualization based on both PCA
1st row) and UMAP (second row) on the data itself (without
NDP-IN or NNDP-OUT) consisting of three categories: race (left
olumn), MI event age group (middle column), and sex (right
olumn). The third and fourth rows of Fig. 5 represent PCA and
MAP, respectively, on the data after they are transformed using
P. In these two figures, training/test data share the same color
or each class but the training set’s color is darker and the test
ata set’s color is lighter. Our proposed NNDP-IN method (con-
isting of NNPD-IN-PCA and NNDP-IN-UMAP) outperformed all
ther methods including NNDP-OUT-PCA and NNDP-OUT-UMAP
s well as PCA, UMAP, RP-PCA, and RP-UMAP as there are distinct
lusters separating different races, MI event age groups, and
exes with our approach. For example, both NNDP-IN methods
NNDP-IN-PCA and NNDP-IN-UMAP) show clear clusters separat-
ng Blacks from Europeans for the race category, young MI events
rom old MI events, and males from females.
572
The NNDP-OUT which uses V matrix (the output weights) did
not provide good results especially for the MI event age group and
sex when compared to NNDP-IN. Unlike NNDP-IN, there are no
distinct clusters separating different MI event age groups and the
sex category. This is because NNDP-OUT has lower correlations
between word representations; only gene name vectors are used
to create the V matrix so there are fewer relationships between
the gene name vectors and other word vectors in the V matrix.
Therefore, this leads to worse performance of NNDP-OUT for the
sex and MI event age group categories. Note, however, that good
performance of NNDP-OUT for the race category can be seen.

As shown in Fig. 5, PCA transformation on the data itself shows
good cluster separation between groups for two categories—race
and sex (1st row). However, its UMAP transformation counterpart
shown in the 2nd row of Fig. 5 was not able to provide good clus-
ter separation when compared to PCA for race and sex categories.
This is expected, as PCA is designed to work well in preserving
global structures whereas UMAP works better for unraveling local
structural dynamics (Sakaue et al., 2020). Transformation of the
data with RP using Gaussian distribution followed by either PCA
or UMAP for 2-D visualization are shown in the 3rd and 4th rows,
respectively, of Fig. 5, for three categories. For RP with PCA, there
is good clustering separation for race, but it does poorly with the
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Fig. 6. Visualization results using conventional embedding methods-NNDP-Word2Vec-PCA, NNDP-Word2Vec-UMAP, NNDP-GloVe-PCA, NNDP-GloVe-UMAP,
NDP-FastText-PCA, and NNDP-FastText-UMAP for race (a, d, g, j, m, p), MI event age group (b, e, h, k, n, q), and sex (c, f, i, l, o, r) categories.
I event age and sex groups. For RP with UMAP, separation of
lusters among race, MI event age group, and sex is nonexistent.

.1.2. NNDP-IN and -OUT vs. NNDP-Word2Vec, -GloVe, -FastText,
ELMo, -GPT-2, and -ALBERT

We show a 2-D visualization of clustering based on the appli-
ation of both PCA and UMAP on the NNDP-Word2Vec (1st and
573
2nd rows), NNDP-GloVe (3rd and 4th rows), and NNDP-FastText
(5th and 6th rows) in Fig. 6, NNDP-ELMo (1st and 2nd rows) and
NNDP-GPT-2 (3rd and 4th rows) in Fig. 7, and NNDP-ALBERT[d]
(1st and 2nd rows) and NNDP-ALBERT[i] (3rd and 4th rows) in
Fig. 8 for three categories: race (left column), MI event age group
(middle column), and sex (right column). In Fig. 4, 6–8, all NNDP
embedding variants provided good separation between Black and
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Fig. 7. Visualization results using contextual embedding methods-NNDP-ELMo-PCA, NNDP-ELMo-UMAP, NNDP-GPT-2-PCA, and NNDP-GPT-2-UMAP for race (a, d, g,
j), MI event age group (b, e, h, k), and sex (c, f, i, l) categories.
European classes, similar to NNDP-IN and NNDP-OUT. However,
for the MI event age and sex categories, both PCA and UMAP on
the NNDP-Word2Vec, NNDP-GloVe, NNDP-FastText, NNDP-ELMo,
NNDP-GPT-2, NNDP-ALBERT[d], and NNDP-ALBERT[i] showed
less clear separations for the young MI event vs. old MI event, and
male vs. female when compared to NNDP-IN cluster separations,
as shown in Fig. 4. In particular, NNDP-ELMo and ALBERT[i]-PCA
performed worst in discriminating male vs. female classes (1st
row, third column in Fig. 7, and 2nd row, third column in Fig. 8),
respectively. However, the UMAP on NNDP-ALBERT[i] (4th row,
third column) nicely separated two sex classes, which suggests
that its embedding representations preserved some degree of the
correlations between gene names. However, the class separations
in the MI event and sex categories using the embedding models
were all visually less impressive than those of NNDP-IN.

In order to investigate the feasibility of the effects of literature
nformation on MI risks by our NNDP-PCA and NNDP-UMAP, we
dditionally examined if MI at different age groups are different
r can be separated between Blacks and Europeans. We examined
wo age groups when MI occurred for the subjects. The age groups
re defined as between young (age ranges from 20 to 50) and old
age ranges from above 50 to 60) groups for both races. Fig. 9
hows visualization results of PCA and UMAP on NNDP-IN, NNDP-
UT, and RP, and PCA and UMAP transformations on the data
574
themselves. Fig. 10 shows the visualization results for PCA and
UMAP via conventional embedding methods—NNDP-Word2Vec,
NNDP-GloVe, and NNDP-FastText. Figs. 11–12 show the visualiza-
tion results transformed by PCA and UMAP via contextual em-
bedding methods—NNDP-ELMo, NNDP-GPT-2, NNDP-ALBERT[d],
and NNDP-ALBERT[i].

The first row and first column of Fig. 9 results are based on
NNDP-IN-PCA whereas the same row with the second column
is via NNDP-IN-UMAP. The NNDP-IN with either PCA or UMAP
appears to separate two MI event age groups by race. There
are predominantly four clusters that are well separated between
Europeans and Blacks and the two age groups of MI for both
races. The other three approaches, NNDP-OUT with either PCA
or UMAP (second row), PCA (3rd row, first column), UMAP (3rd
row, second column), and RP with either PCA or UMAP (4th row)
do not provide as good cluster separation as seen with either
NNDP-IN-PCA or NNDP-IN-UMAP in Fig. 9.

Fig. 10 shows PCA and UMAP results via conventional em-
bedding methods—NNDP-Word2Vec, NNDP-GloVe, and NNDP-
FastText, while Fig. 11 shows PCA and UMAP results via
contextual embedding methods—NNDP-ELMo, NNDP-GPT-2,
NNDP-ALBERT[d], and NNDP-ALBERT[i], respectively. We found
that all NNDP-based embedding variant methods provided better
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Fig. 8. Visualization results on contextual embedding methods-NNDP-ALBERT[d]-PCA, NNDP-ALBERT[d]-UMAP, NNDP-ALBERT[i]-PCA, and NNDP-ALBERT[i]-UMAP for
race (a, d, g, j), MI event age group (b, e, h, k), and sex (c, f, i, l) categories.
separations between Europeans and Blacks and the two age
groups of MI for both races than did the sole use of UMAP and
PCA on the data visualization. The use of PCA on NNPD-Word2Vec
showed similarly good separations between the clusters with
NNDP-IN-PCA, but the use of UMAP on NNDP-IN showed even
better separations than did NNDP-Word2Vec-UMAP. In summary,
Figs. 4–11 indicate that NNDP-IN provides the best visual clus-
ter separation among different classes when compared to all
different embedding approaches.

Additionally, an interesting observation is that the distance
etween young and old Black subjects’ MI prevalence is closer
o each other than are the Europeans age groups’ counterparts,
specially seen with NNDP-IN-UMAP (the first row, second col-
mn of Fig. 9), NNDP-Word2Vec-UMAP (the first row and second
olumn of Fig. 10), NNDP-GPT-2-UMAP (the second row and
econd column of Fig. 11), and NNDP-ALBERT[i]-UMAP (the third
ow and second column of Fig. 11). The implication of this is that
younger Black group may have similar MI risks to the older
roup. In literature, Black patients presenting with MI tend to
e younger than other races (Garcia et al., 2021). Considering

hat our NNDP method involves better visualization results, as

575
shown in Figs. 4–8, the result that the younger Black MI age
group is closely clustered with the older Black MI age group, may
suggest that they were affected by unknown risks in the literature
word embeddings. Since socioeconomic status has been widely
reported in the literature as the most significant factor in the
high prevalence of MI in young Black (Garcia et al., 2021), the
hidden risks might contain some degree of socioeconomic-related
information obtained from literature.

8.2. Evaluation results of semantic correlations in word embeddings

To validate and interpret visualization results, we also ex-
amined the textual semantic analysis in literature word em-
beddings. We calculated the cosine similarities of the following
words: ‘heart, african + american, european + american, male +
female’ with all words (241,315 unique words) using each em-
bedding model (NNDP-IN, NNDP-OUT, NNDDP-Word2Vec, NNDP-
GloVe, NNDP-FastText, NNDP-ELMo, NNDP-GPT-2, and NNDP-
ALBERT). For literature embedding models (IN and OUT matrices),
Word2Vec, GloVe, and FastText, 241,315 unique word embedding

vectors were extracted directly from their pre-trained vocabulary
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Fig. 9. NNDP-IN-PCA, NNDP-IN-UMAP, NNDP-OUT-PCA, NNDP-OUT-UMAP, PCA UMAP, RP-PCA, RP-UAMP methods for Young European MI, old European MI, young
Black MI, old Black MI, and other class visualizations.
elements. However, ALBERT has only 30,000 word-piece vocabu-
lary elements so we additionally extracted 241,315 unique word
embedding vectors using various combinations of 30,000-word
piece embedding vectors from the pre-trained ALBERT for the
analysis of semantic correlations. For example, a complete unique
word ‘heartburn’ was dissembled into ‘heart’ and ‘##burn’ by the
ALBERT’s word piece tokenizer. Then we averaged the ‘heart’ and
‘##burn’ to obtain a ‘heartburn’ unique word vector. All models’
cosine similarities were computed using Eq. (7). Since GPT-2 has
only a 50,257 sub-word vocabulary, GPT-2’s 241,315 unique word
embedding vectors were computed using various combinations of
576
50,257 sub-word embedding vectors from the pre-trained GPT-
2. ELMo’s 241,315 unique word embedding vectors were also
extracted using the combinations of the character embedding
vectors from the pre-trained ELMo. We sorted top-10 similar
words with their similarity score for each query, as shown in
Tables 3–4.

As shown in Table 3(a), the U matrix (NNDP-IN) provides se-
mantically related terms for all queries. For ‘heart’, heart-related
abbreviations, for example, vsmcs (vascular smooth muscle cells),
and cardiac genetic symbols (mir101a (Pan et al., 2012), barx1
(Gould & Walter, 2000), ddi2 (van der Ende et al., 2018), and
nkx2-1 (Yin et al., 2006)) were obtained. The ‘hypertrophy’ is not
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Fig. 10. NNDP-Word2Vec-PCA, NNDP-Word2Vec-UMAP, NNDP-GloVe-PCA, NNDP-GloVe-UMAP, NNDP-FastText-PCA, and NNDP-FastText-UMAP methods for Young
European MI, old European MI, young Black MI, old Black MI, and other class visualizations.
Table 3
Query associated top-10 words search using U and V (IN matrix of our model for NNDP-IN and OUT MATRIX of our model For NNDP-OUT).

‘‘heart’’ Score ‘‘african + american’’ Score ‘‘european + american’’ Score ‘‘male + female’’ Score

(a) NNDP-IN (used
IN-Matrix U)

heart 1.00 african 0.62 european 0.66 female 0.69
cardiac 0.72 american 0.62 american 0.66 male 0.69
ventricular 0.58 association 0.39 gwas 0.47 reproductive 0.43
cardiomyocytes 0.50 plce 0.39 association 0.45 fertility 0.43
hypertrophy 0.45 #10 0.38 associations 0.43 sperm 0.43
mir101a 0.44 gwas 0.38 #10 0.43 spermatozoa 0.40
barx1 0.44 associations 0.38 population 0.43 infertile 0.40
nkx2-1 0.42 population 0.37 genetic 0.42 #ZBTB32 0.38
ddi2 0.41 genetic 0.37 loci 0.39 fertilization 0.38
vsmcs 0.41 european 0.37 mtefts 0.39 testis 0.38

(b) NNDP-OUT (used
OUT-Matrix V)

heart 1.00 american 0.99 american 0.99 male 0.99
cntfets 0.98 african 0.99 european 0.99 female 0.99
aoah-# 0.98 circ_0043278 0.98 population-wise 0.98 brahmi 0.98
gbmscs 0.98 muscle-# 0.98 microrna-34 0.98 pyridin-3-yl 0.98
sub-saharan 0.98 l104a 0.98 bio-macromolecules 0.98 pneumothorax 0.98
parker 0.98 flrt1 0.98 ichthyosis-causative 0.98 #ASIP1 0.98
cdc13 0.98 prrxl1 0.98 14z-eicosatetraenoic 0.98 bc034767 0.98
hfq 0.98 coaxially 0.98 retgcs 0.98 cgnp 0.98
single-transmembrane 0.98 igf2r 0.98 pallister-killian 0.98 #AVPR2 0.98
aries_v4 0.98 #FIP1 0.98 #rs3858145 0.98 #UGT2A3 0.98
577
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Fig. 11. NNDP-ELMo-PCA, NNDP-ELMo-UMAP, NNDP-GPT-2-PCA, NNDP-GPT-2-UMAP, NNDP-ALBERT[d]-PCA, NNDP-ALBERT[d]-UMAP, NNDP-ALBERT[i]-PCA, and
NDP-ALBERT[i]-UAMP methods for Young European MI, old European MI, young Black MI, old Black MI, and other class visualizations.
irectly related to heart, however, the hypertrophy is often re-
erred as ‘hypertrophy cardiomyopathy’. For ‘african + european’,
words semantically related to the query were captured: associ-
tion, gwas, associations, population, genetic, and european. We
ollected literature data based on gene names, and the genome
tudy is called genome-wide association studies (GWAS). The
WAS is biased towards European populations in a risk prediction
tudy (Peterson et al., 2019). Hence, current studies have aimed
o estimate accurate disease risks for other races such as African
578
Americans (Peterson et al., 2019). For the ‘european + .american’,
8 words that are semantically related to the query were captured.
The query shared the same 7 words with ‘african + .american’
since the ‘african’ and ‘european’ have high semantic similarity
as a racial category. The ‘loci’ is a term used in genetics. For ‘male
+ female’, the U matrix showed sex-related words–reproductive,
fertility, sperm, spermatozoa, infertile, fertilization, testis, and
sex-related gene ZBTB32. The ZBTB32 is known as testis zinc
finger protein (TZFP) that has a significant role in adult testis
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Van Wyngene et al., 2021). In contrast, as shown in Table 3(b),
he V matrix (NNDP-OUT) provides randomized words and simi-
ar scores for all captured words. These results suggest that the V
atrix does not represent finer correlations between words as we
xpected. The results can also explain why NNDP-OUT provides
nferior performance when compared to NNDP-IN, as shown in
igs. 4 and 9.
Table 4(a) shows that Word2Vec (NNDP-Word2Vec) clusters

ategorically and semantically similar words closer. For ‘heart’,
ategorically similar words such as ‘kidney’, ‘eye’, ‘liver’, and ‘or-
an’ were well represented, as were semantically related words
uch as ‘cardiac’, ‘ventricular’, ‘myocardium’, ‘cardiovascular’, and
myocardial’. For ‘african + american’ and ‘european + american’,
ostly race-related words were captured as they are bolded.
or ‘male + female’, age-related words also appeared: ‘adult’,
offspring’, ‘3-month-old’, ‘young’, ‘month-old’. These good sim-
larity results could explain why NNDP-Word2Vec has good clus-
er separation for all categories, as shown in Figs. 6 and 10.
owever, NNDP-Word2Vec showed smaller cluster separations
or MI events and sex categories when compared to NNDP-IN in
igs. 4 and 9. We can find the reasons via Table 3(a) and 4(b):
able 3(a) (for NNDP-IN) shows topically related words for each
uery while Table 4(a) (for NNDP-Word2Vec) shows categorically
elated words for each query. Note that a literature embed-
ing model generates embedding vectors by predicting a gene
ame using associated documents that represent topically related
orrelations between words, while Word2Vec generates embed-
ing vectors by predicting a center word using context words
hat represent categorically related correlations between word.
he categorically strong representations may reduce the priority
or gene-gene correlations for the data visualization, so the co-
ine similarity result could explain why NNDP-IN is superior to
NDP-Word2Vec for cluster separations.
Table 4(b) shows GloVe (NNDP-GloVe) results for each query.

s shown in Table 4(b), similar words appeared to be ran-
omly selected, but the bolded words are co-occurrent with
ach query keyword. For the first word column: ‘dallas (heart
allas)’, ‘failure-relevant (heart failure-relevant)’, ‘failure-related
heart failure-related)’, ‘murmur (heart murmur)’, and ‘conotrun-
al (conotrucal heart)’ were correctly captured based on the word
o-occurrence probability. Moreover, ‘jogging’ causes changes
n heart rate, and ‘tsk-1ko’ is reported to modulate pressure
verload-induced cardiac remodeling (Duan et al., 2020). For the
econd column words: sweetgum (American sweetgum), dias-
ora (African diaspora), bulldog (American bulldog), and non-
innish (non-finnish European) were also correctly captured. The
eurasier’ is a dog breed originating from Europe. The ‘folklores’
s a cultural matter that relates to racial information. For ‘male
female’, some sex-related genes were also captured: ‘hnsc-h9’

s a female human neural stem cell (Pottmeier et al., 2020) and
fap69 is an infertility-related gene (Dong et al., 2018). Some
opically related word such as ‘infertility’ and ‘neutered’ were
lso captured. Symbol-related words also appeared with ‘sex’
i.e., sex symbol). However, the results have no specific patterns
it is not clear whether each word vector was created topically
r categorically), hence, these results could explain why NNDP-
loVe-PCA provided worse cluster separations than did NNDP-IN
nd NNDP-Word2Vec for the MI event age and sex categories, as
hown in Figs. 4, 6, 9, and 10.
Table 4(c) shows that FastText (NNDP-FastText) adequately

lusters categorically and semantically similar words, but it also
aptured sub-word-related words. For ‘heart’, most captured
ords include ‘heart’ as well as a semantically similar word

myocardium’. For ‘african + american’, ‘european + american’
nd ‘male + female’, all captured words include sub-words of

he query word such as ‘afro-american’, ‘latino-american’, and

579
‘f2gfemale’. The sub-word biased results could explain why
NNDP-FastText shows more thin shapes of separated clusters for
the sex category while unique-word-based embeddings–NNDP-
IN, NNDP-Word2Vec, and NNDP-GloVe show wider shapes of
separated clusters as shown in Figs. 4, 6, 9, and 10.

Table 4(d) shows that ELMo (NNDP-ELMo) captures semanti-
cally and categorically related words as well as sub-word-related
words for each query. For ‘heart’, we show that categorically
related words (kidney, eye, brain, and liver as a human body
category) and topically related words such as peri-ictal and epi-
cardial (epicardial pacemaker) were correctly captured. However,
it contains not-related words such as ‘semi-soli’ and ‘dent’. For
‘african + american’ and ‘european + american’, most race-based
words were captured. ‘wean’, ‘han’, and ‘hessian’ were also ad-
ditionally captured but they are not related to the query word.
However, considering that both queries contain ‘-an’ at the end of
characters, we expected this because of the sub-word information
represented by character-based convolutional filters of ELMo. For
‘male + female’, topically related words such as ‘low-fertility’
and sex-related risk factors were captured: ‘hcc-bearing’ as an-
drogen increases the risk of hcc (hepatocellular carcinoma) (Lee
et al., 2019) and ‘pcd-affected’ as pcd (primary ciliary dyskinesia)
affects male infertility (Jayasena & Sironen, 2021). Considering
ELMo captures contextual information, it provides more topical
information when compared with Word2Vec, GloVe, and Fast-
Text. However, ELMo shows some collected words that may be
related to each other (‘march’, ‘november’), but they are unrelated
to input query words (i.e., ‘african + european’). This is because
bidirectional LSTMs capture information sequentially from left-
to-right and right-to-left, and ELMo was trained with fixed-length
sentences as its input. However, this work extracted gene name-
based representations by feeding each gene name (a word) to
ELMo, and the padding was added next to the word to reach the
fixed-length input of ELMo. Hence, the ELMo structure may have
corrupted information of gene-name-based representation. These
results could explain why ELMo provides the worst separation of
clusters for MI event and sex categories when compared to other
NNDP approaches (except NNDP-OUT), as shown in Figs. 4–11.

Table 4(e) shows that GPT-2 (NNDP-GPT-2) captures mostly
topically similar words as well as sub-word-based words. For
‘heart’, heart-related risk factors and terms were captured: h2afz
(H2 A.z), hdsp (heart disease and stroke program), hmgbs (high
mobility group boxes), and hffs (heart failure survival score).
H2 A.z is related to cardiac myocyte hypertrophy (Chen et al.,
2006), and the high mobility group box 1 may aid in treatment of
cardiovascular diseases (Raucci et al., 2019). Categorically related
hbmec (human brain microvascular endothelial cells) and hle-
b3 (hydrogen peroxide-treated lens epithelial cells) as a human
body category were also captured. On the other hand, ‘hot’ and
‘hatched’ are not related to heart. However, ‘hot’ often appeared
with ‘heart’, and there is a term ‘HATCH score’ related to heart
failure prediction (Shibata et al., 2022). Interestingly, all captured
words included a character ‘h’. We expect this is because of GPT-
2’s BPE tokenizer. The BPE replaces the most common pair of
consecutive chars with a unique character that does not appear in
the training data. We expect pairing these consecutive chars may
provide sub-word-biased representations. For ‘african + ameri-
can’, ‘european + american’, and ‘male + female’, all captured
words included sub-words of the query word such as ‘american-
specific’, ‘european-derived’, and ‘female-smokers’. The results
could explain why NNDP-GPT-2-UMAP shows more thin shapes
of visualized clusters for all categories similar to the visualization
results of NNDP-FastText, as shown in Figs. 6, 7, 10, and 11. The
results of sub-word-biased representations also may explain why
NNDP-GPT-2-UMAP shows less separations for female and male

categories, as shown in Figs. 7 and 11.
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Table 4
Query associated top-10 words search using Word2Vec, GloVe, FastText, ELMo, GPT-2, and ALBERT.

‘‘heart’’ Score ‘‘african + american’’ Score ‘‘european + american’’ Score ‘‘male + female’’ Score

(a) NNDP-Word2Vec

heart 1.00 american 0.76 american 0.80 female 0.89
kidney 0.68 african 0.76 european 0.80 male 0.89
cardiac 0.66 european 0.66 asian 0.63 adult 0.60
ventricular 0.59 asian 0.63 african 0.63 males 0.59
myocardium 0.59 indian 0.62 caucasian 0.61 females 0.58
cardiovascular 0.55 latino 0.60 latino 0.61 offspring 0.58
myocardial 0.53 caucasian 0.60 japanese 0.59 3-month-old 0.57
eye 0.53 african-american 0.59 african-american 0.59 young 0.57
liver 0.52 south 0.58 afro-caribbean 0.58 month-old 0.56
organ 0.52 l56rfs 0.57 australian 0.58 isfahan 0.56

(b) NNDP-GloVe

heart 1.00 american 0.83 american 0.83 male 0.95
healthy-type 0.92 african 0.83 european 0.83 female 0.95
dallas 0.91 #5681 0.78 #1794 0.82 hnsc-h9 0.95
failure-relevant 0.88 #1794 0.77 #5681 0.80 cfap69-knockout 0.92
jogging 0.82 sweetgum 0.77 sweetgum 0.79 neutered 0.92
failure-related 0.82 143e−02 0.75 folklores 0.75 symbolt 0.92
murmur 0.81 folklores 0.73 143e−02 0.74 hypo-s-dmrs 0.92
tsp-1ko 0.79 diaspora 0.73 non-finnish 0.73 symbolc 0.91
conotruncal 0.78 bulldog 0.71 lines-african 0.72 infer-tility 0.91
arvms 0.77 l56rfs 0.70 eurasier 0.72 3244-g 0.91

(c) NNDP-FastText

heart 1.00 african 0.87 european 0.85 female 0.96
canheart 0.80 american 0.87 american 0.85 male 0.96
hearth 0.80 west-african 0.80 euro-american 0.80 f2gfemale 0.87
cardiac 0.76 euro-american 0.80 african 0.76 pfemale 0.81
brain-heart 0.75 afro-american 0.78 latino-american 0.76 male–female 0.79
heartworm 0.75 latino-american 0.78 european-american 0.75 male-male 0.77
heart-# 0.73 african-american 0.77 north-american 0.75 females 0.76
life-heart 0.73 non-african 0.76 afro-american 0.74 orfemale 0.75
myocardium 0.73 latin-american 0.76 indo-european 0.74 males 0.75
heartburn 0.73 americans 0.75 european-australian 0.74 xx-male 0.73

(d) NNDP-ELMo

heart 1.00 african 0.90 european 0.87 male 0.95
kidney 0.83 american 0.90 american 0.87 female 0.95
eye 0.78 mexican 0.86 african 0.83 pfemale 0.79
brain 0.77 asian 0.84 asian 0.83 hcc-bearing 0.78
peri-ictal 0.74 han 0.83 mexican 0.82 pmale 0.78
hearth 0.73 september 0.82 han 0.80 baf-a1-treated 0.78
liver 0.73 march 0.81 caucasian 0.80 low-fertility 0.78
episcleral 0.72 caucasian 0.80 hessian 0.77 pcd-affected 0.77
semi-solid 0.72 november 0.80 kangaroo 0.77 riboflavin-unresponsive 0.77
dent 0.72 european 0.79 wean 0.77 obese 0.77

(e) NNDP-GPT-2

heart 1.00 american 0.79 american 0.76 male 0.78
hot 0.93 african 0.79 european 0.76 female 0.78
hbmec 0.93 american-specific 0.77 european-derived 0.74 male-limited 0.75
hnpgs 0.93 americanum 0.75 european-frequent 0.73 female-smokers 0.74
hatched 0.93 african-ancestry 0.74 americanus 0.73 female-limited 0.73
hle-b3 0.93 african-american 0.74 americanum 0.73 female-related 0.72
h2afz 0.92 african-descent 0.74 american-specific 0.73 male-# 0.72
hdsp 0.92 americanus 0.73 european-origin 0.72 female-specific 0.71
hmgbs 0.92 african-americans 0.73 european-australians 0.71 female-biased 0.70
hffs 0.92 african-origin 0.72 european-american 0.70 male-dominant 0.70

(f) NNDP-ALBERT[d]

heart 1.00 american 0.69 european 0.73 male 0.74
body 0.66 african 0.69 american 0.73 female 0.74
pancreatic 0.61 french-american-british 0.58 african-american 0.59 male–female 0.59
hearts 0.61 americans 0.56 americans 0.56 male-male 0.48
chd8 0.57 hispanic-americans 0.56 college 0.52 male-to-female 0.47
shr-lx 0.57 african-american 0.55 french-american-british 0.51 young 0.43
epicardial 0.56 east 0.52 east–west 0.51 mother-infant 0.43
dies 0.56 european-american 0.51 black 0.50 malep 0.42
bone-regeneration 0.55 euro 0.48 african-americans 0.49 female-smokers 0.41
whole-muscle 0.55 easter 0.48 germany 0.49 maleate 0.38

(g) NNDP-ALBERT[i]

heart 1.00 african 0.75 european 0.74 male 0.86
hearth 0.78 american 0.75 american 0.74 female 0.86
heartburn 0.76 african-american 0.71 european-american 0.70 male–female 0.78
hearts 0.72 european-american 0.63 african-american 0.65 male-male 0.72
brain-heart 0.70 hispanic-american 0.62 hispanic-american 0.62 maleic 0.63
heartworm 0.66 european 0.60 african 0.61 malep 0.62
life-heart 0.62 latino-american 0.59 european-asian 0.60 maleate 0.58
cardiac 0.61 americanum 0.58 european-australian 0.60 female-predominant 0.55
heart-directed 0.55 mexican-american 0.58 latino-american 0.59 female-limited 0.52
heart-enriched 0.55 asian 0.58 americanum 0.58 male-predominant 0.51

Note: Semantically correlated words are bolded.
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Table 5
Quantitative performance of Race, MI event age group, and sex classifications for NNDP-IN, NNDP-OUT, PCA, UMAP, and RP.

(a) Race (b) MI Event Age Group (c) Sex

Method Model Acc. Sens. Spec. G. Acc. Sens. Spec. G. Acc. Sens. Spec. G.

Original
64,000-dimensional data

SVM-linear 0.96 0.96 0.99 0.97 0.79 0.78 0.81 0.79 0.99 1.00 0.98 0.99
SVM-rbf 0.95 0.95 0.98 0.96 0.71 0.92 0.14 0.35 0.99 1.00 0.99 0.99
SVM-poly 0.95 0.95 0.98 0.96 0.71 0.92 0.14 0.35 0.99 1.00 0.99 0.99
LR 0.94 0.94 0.98 0.96 0.74 0.93 0.25 0.46 0.99 1.00 0.99 0.99
MLP 0.96 0.96 0.99 0.97 0.74 0.93 0.21 0.44 0.96 0.97 0.95 0.96

NNDP (IN)

SVM-linear 0.95 0.95 0.98 0.96 0.78 0.87 0.54 0.68 0.98 0.99 0.97 0.98

SVM-rbf 0.94 0.94 0.98 0.96 0.76 0.91 0.36 0.57 0.99 0.99 0.98 0.99
SVM-poly 0.94 0.94 0.98 0.96 0.76 0.91 0.36 0.57 0.99 0.99 0.98 0.99
LR 0.94 0.94 0.98 0.96 0.77 0.92 0.38 0.59 0.99 0.99 0.98 0.99
MLP 0.95 0.95 0.98 0.97 0.77 0.89 0.44 0.62 0.98 0.98 0.98 0.98

*p-value 0.43 0.69 1.12

NNDP (OUT)

SVM-linear 0.95 0.95 0.98 0.96 0.76 0.89 0.40 0.59 0.93 0.90 0.94 0.92
SVM-rbf 0.94 0.94 0.98 0.96 0.72 0.91 0.20 0.42 0.91 0.86 0.94 0.90

SVM-poly 0.94 0.94 0.98 0.96 0.72 0.91 0.20 0.42 0.91 0.86 0.94 0.90

LR 0.95 0.95 0.98 0.96 0.76 0.89 0.39 0.59 0.93 0.90 0.94 0.92
MLP 0.94 0.94 0.98 0.96 0.73 0.89 0.32 0.53 0.92 0.89 0.94 0.91

*p-value 0.43 0.20 0.00

PCA

SVM-linear 0.93 0.93 0.98 0.95 0.66 0.78 0.37 0.53 0.89 0.87 0.90 0.88
SVM-rbf 0.22 0.22 0.74 0.40 0.28 0.01 1.00 0.07 0.69 0.11 1.00 0.32

SVM-poly 0.22 0.22 0.74 0.40 0.28 0.01 1.00 0.07 0.69 0.11 1.00 0.32

LR 0.93 0.93 0.98 0.95 0.66 0.79 0.34 0.50 0.90 0.86 0.92 0.88
MLP 0.28 0.28 0.80 0.47 0.60 0.68 0.38 0.51 0.86 0.75 0.93 0.82

*p-value 0.02 0.00 0.00

UMAP

SVM-linear 0.85 0.85 0.95 0.90 0.77 0.84 0.57 0.68 0.62 0.34 0.77 0.51

SVM-rbf 0.83 0.83 0.94 0.89 0.73 0.96 0.14 0.31 0.65 0.00 1.00 0.00

SVM-poly 0.83 0.83 0.94 0.89 0.73 0.96 0.14 0.31 0.65 0.00 1.00 0.00

LR 0.85 0.85 0.95 0.90 0.76 0.84 0.54 0.66 0.62 0.26 0.81 0.45

MLP 0.86 0.86 0.95 0.91 0.76 0.87 0.48 0.64 0.63 0.36 0.77 0.52
*p-value 0.00 0.40 0.00

RP
(Gaussian Distribution)

SVM-linear 0.94 0.94 0.98 0.96 0.69 0.81 0.38 0.55 0.74 0.58 0.83 0.69

SVM-rbf 0.95 0.95 0.98 0.96 0.70 0.91 0.14 0.36 0.78 0.59 0.88 0.72
SVM-poly 0.95 0.95 0.98 0.96 0.70 0.91 0.14 0.36 0.78 0.59 0.88 0.72
LR 0.94 0.94 0.98 0.96 0.73 0.94 0.14 0.35 0.74 0.55 0.85 0.68

MLP 0.94 0.94 0.98 0.96 0.71 0.86 0.30 0.50 0.73 0.58 0.81 0.69

*p-value 0.43 0.00 0.00

*p-value was computed based on the best accuracies between original 6400-dimensional data set and each method.
Table 4(f) shows that the sum matrix of token and posi-
ional embedding matrices of ALBERT (NNDP-ALBERT[d]) ade-
uately captures categorically and topically similar words. For
heart’, categorically and topically related words such as pancre-
tic (pancreatic cardiac), epicardial (epicardial pacemaker), dies,
one-regeneration, and whole-muscles were correctly captured.
ardiac risk factor-related proteins were also captured. For exam-
le, chromodomain helicase binding protein 8 (Chd8) contributes
o cardiac development (Shanks et al., 2012), and SHR-Lx re-
uces blood pressure and heart weight (Šeda et al., 2005). For
african + american’ and ‘european + american’, most of the race-
elated words were captured. Some of the captured words are
ot directly related to race but they co-appeared with ‘ameri-
an’ including: ‘easter’, ‘east’, and ‘college’. For ‘female + male’,
s a demographic category, the categorically related word ‘age’
ppeared. However, most query-sub-word-related words (query-
ord-related pieces) such as ‘male-male’ were present. These
esults could explain why ALBERT provides unimpressive cluster
eparations for the sex category, as shown in Fig. 8(c) and (f).
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Table 4(g) shows that the token embedding matrix of ALBERT
(NNDP-ALBERT[i]) clusters words mostly based on query word-
related sub-words. For ‘heart’, query-sub-word-related words
were correctly captured: ‘hearth’, ‘heartburn’, ‘hearts’, ‘brain-
heart’, ‘heartworm’, ‘life-heart’, ‘heart-directed’, ‘heart-enriched’,
as well as the topically related word ‘cardiac’. For ‘african +
american’ and ‘european + american’, word-pieced-based words
were also captured as well as race related words such as ‘eu-
ropean’, ‘asian’, and ‘african’. as shown in Table 4(c). For ‘male
+ female’, query word-piece-based words were all captured:
‘male–female’, ‘male-male’, ‘maleic’, ‘malep’, ‘maleate’, ‘female-
predominant’, ‘female-limited’, and ‘male-predominant’. The
presence of a large number of sub-word-based similar words can
reduce the priority for categorically or topically similar words
for each query; the sub-word- based results could explain why
NNDP-ALBERT[i]-PCA provided poor class separations for the MI
event and the sex categories. The results also could explain
how sub-word-based information is related to the visualiza-
tion results when compared with NNDP-ALBERT[d]-PCA’s results.
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Table 6
Quantitative performance of Race, MI event age group, and sex classifications for NNDP-Word2Vec, NNDP-GloVe, NNDP-FastText, NNDP-ELMo, NNDP-GPT-2, and
NNDP-ALBERT.

(a) Race (b) MI Event Age Group (c) Sex

Method Model Acc. Sens. Spec. G. Acc. Sens. Spec. G. Acc. Sens. Spec. G.

NNDP-Word2Vec

SVM-linear 0.95 0.95 0.98 0.96 0.77 0.88 0.50 0.66 0.97 0.98 0.96 0.97

SVM-rbf 0.94 0.94 0.98 0.96 0.76 0.92 0.36 0.57 0.98 0.98 0.97 0.98
SVM-poly 0.94 0.94 0.98 0.96 0.76 0.92 0.36 0.57 0.98 0.98 0.97 0.98
LR 0.94 0.94 0.98 0.96 0.77 0.92 0.38 0.59 0.98 0.99 0.97 0.98
MLP 0.95 0.95 0.98 0.97 0.77 0.91 0.40 0.60 0.97 0.96 0.97 0.97

*p-value 0.43 0.39 0.00

NNDP-GLOVE

SVM-linear 0.95 0.95 0.98 0.97 0.77 0.87 0.51 0.66 0.98 0.99 0.98 0.98
SVM-rbf 0.94 0.94 0.98 0.96 0.76 0.91 0.37 0.58 0.98 0.98 0.98 0.98
SVM-poly 0.94 0.94 0.98 0.96 0.76 0.91 0.37 0.58 0.98 0.98 0.98 0.98
LR 0.94 0.94 0.98 0.96 0.78 0.92 0.41 0.61 0.98 0.98 0.98 0.98
MLP 0.94 0.94 0.98 0.96 0.76 0.90 0.38 0.58 0.98 0.98 0.97 0.98

*p-value 0.43 0.69 0.00

NNDP-FastText

SVM-linear 0.94 0.94 0.98 0.96 0.78 0.87 0.52 0.67 0.98 0.99 0.97 0.98
SVM-rbf 0.94 0.94 0.98 0.96 0.78 0.92 0.41 0.61 0.98 0.98 0.97 0.98
SVM-poly 0.94 0.94 0.98 0.96 0.78 0.92 0.41 0.61 0.98 0.98 0.97 0.98
LR 0.94 0.94 0.98 0.96 0.77 0.92 0.39 0.60 0.98 0.98 0.98 0.98
MLP 0.94 0.94 0.98 0.96 0.77 0.92 0.39 0.60 0.97 0.97 0.97 0.97

*p-value 0.10 0.69 0.00

NNDP-ELMo

SVM-linear 0.94 0.94 0.98 0.96 0.73 0.91 0.26 0.48 0.97 0.97 0.97 0.97

SVM-rbf 0.94 0.94 0.98 0.96 0.73 0.91 0.26 0.48 0.87 0.79 0.91 0.85

SVM-poly 0.94 0.94 0.98 0.96 0.74 0.90 0.35 0.54 0.87 0.79 0.91 0.85

LR 0.94 0.94 0.98 0.96 0.72 0.89 0.28 0.49 0.94 0.93 0.95 0.94

MLP 0.94 0.94 0.98 0.96 0.76 0.89 0.40 0.59 0.91 0.87 0.93 0.90

*p-value 0.10 0.19 0.00

NNDP-GPT-2

SVM-linear 0.95 0.95 0.98 0.96 0.81 0.90 0.54 0.70 0.98 0.99 0.97 0.98
SVM-rbf 0.94 0.94 0.98 0.96 0.76 0.94 0.30 0.52 0.97 0.97 0.97 0.97

SVM-poly 0.94 0.94 0.98 0.96 0.76 0.94 0.30 0.52 0.97 0.97 0.97 0.97

LR 0.95 0.95 0.98 0.96 0.78 0.93 0.37 0.59 0.98 0.99 0.98 0.98
MLP 0.95 0.95 0.98 0.96 0.79 0.92 0.44 0.63 0.97 0.97 0.97 0.97

*p-value 0.43 0.37 0.00

NNDP-ALBERT[d]

SVM-linear 0.95 0.95 0.98 0.96 0.78 0.88 0.53 0.68 0.98 0.99 0.98 0.98
SVM-rbf 0.94 0.94 0.98 0.96 0.78 0.93 0.38 0.59 0.97 0.97 0.98 0.97

SVM-poly 0.94 0.94 0.98 0.96 0.78 0.93 0.38 0.59 0.97 0.97 0.98 0.97

LR 0.94 0.94 0.98 0.96 0.79 0.92 0.45 0.64 0.98 0.97 0.98 0.97

MLP 0.94 0.94 0.98 0.96 0.77 0.91 0.40 0.60 0.97 0.96 0.98 0.97

*p-value 0.43 0.69 0.00

NNDP-ALBERT[i]

SVM-linear 0.94 0.94 0.98 0.96 0.79 0.89 0.54 0.69 0.98 0.98 0.98 0.98
SVM-rbf 0.94 0.94 0.98 0.96 0.77 0.92 0.36 0.57 0.98 0.97 0.98 0.97

SVM-poly 0.94 0.94 0.98 0.96 0.77 0.92 0.36 0.57 0.98 0.97 0.98 0.97

LR 0.94 0.94 0.98 0.96 0.79 0.92 0.42 0.62 0.98 0.98 0.98 0.98
MLP 0.94 0.94 0.98 0.96 0.79 0.92 0.46 0.64 0.97 0.97 0.98 0.97

*p-value 0.10 1.05 0.00

*p-value was computed based on the best accuracies between original 6400-dimensional data set and each method.
NNDP-ALBERT[i]-PCA was inferior to NNDP-ALBERT[d]-PCA, as
NNDP-ALBERT[i] provided more sub-word-related words for sex
category. These results of two different embedding matrices of
ALBERT (ALBERT[d] and ALBERT[i]) show how sub-word-biased
representations could make the shape of visualized clusters thin-
ner; this was also the case for FastText, ELMo, and GPT, as shown
in Figs. 7, 10, and 11.
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8.3. Classification results with dimensionality reduction

For quantitative evaluation of classification of race, MI age
groups, and sex, we show various machine learning (SVM, RF, LR,
and MLP) methods applied to both the original and the reduced
data dimension using NNDP, PCA, UMAP, and RP. NNDP, PCA,
UMAP, and RP reduced the data dimension to 128 from 6400
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or both the training and testing datasets. Tables 5–6 show clas-
ification results (accuracy, sensitivity, specificity, and G-mean
core) with and without dimension-reduced SNP test data. The
lassification for the race is five classes whereas for MI age group
nd sex, they are both two-class identification. For example, for
he race classification, based on the trained data using NNDP
pproach, any of the listed machine learning models were used to
lassify which of the five classes the test data represent. The same
uestion was asked of PCA and RP methods on the classification
f race, MI age groups, and sex.

.3.1. NNDP-IN and -OUT vs. PCA, UMAP, and RP
As shown in Table 5, NNDP-IN provided the best accuracy and

-mean score for race, MI event age group, and sex classifications.
NDP-IN obtained the best accuracy value of 0.95 and 0.97 for
-mean for the race classification, accuracy of 0.78 and G-mean
f 0.68 for the MI event age group classification, and accuracy of
.99 and G-mean score of 0.99 for the sex classification. NNDP-IN
lso shows a p-value more than 0.05 for all classifications when

compared with the original data (without data dimension reduc-
tion) suggesting that the dimension-reduced data is essentially
the same as the original data despite the fact that SNP data di-
mension was reduced 50 times. As expected, NNDP-OUT provides
inferior performance compared to NNDP-IN, but it outperforms
PCA, UMAP, and RP for some of the classifications. NNDP-OUT
outperforms PCA and UMAP and has the same performance as
RP with accuracy of 0.95, and a G-mean score of 0.96 for the race
classification. It outperformed PCA and RP with a 0.76 accuracy
and a 0.59 G-mean score for the MI event age group classification,
and outperformed all methods other than NNDP-IN with 0.93
accuracy and 0.92 G-mean score for the sex classification.

UMAP provides similar performance (0.77 accuracy and 0.68
G-mean) compared to NNDP-IN for MI event age group classi-
fication, however UMAP is inferior to other classifications since
UMAP is designed to perform well for local structure estimation
(Diaz-Papkovich et al., 2019). PCA provides good performance
for the race and sex classifications since race and sex categories
represent global structures and PCA is known to work well for
delineating global dynamics (Sakaue et al., 2020). Hence, it is
expected that PCA provides not as good performance for MI
event age group classification (0.66 accuracy and 0.53 G-mean
score) since this is considered as categorizing local structures. RP
provides better performance than UMAP for the sex classification.
However, RP did not fare well for the classification of MI event
age group.

8.3.2. NNDP-IN and -OUT vs. NNDP-Word2Vec, -GloVe, -FastText,
-ELMo, -GPT-2, and -ALBERT

In Table 6, we show classification results using NNDP-
Word2Vec, NNDP-GloVe, NNDP-FastText, NNDP-ELMo, NNDP-
GPT-2, and NNDP-ALBERT (NNDP-ALBERT[d] and NNDP-ALBERT[i]
for the race, MI event age, and sex classifications. NNDP-IN
showed the most consistent classification performance for all
classification categories. NNDP-Word2Vec and NNDP-GloVe
showed the same performance (accuracy of 0.95 and G-mean of
0.97) as that of NNDP-IN for the race classification. However,
NNDP-Word2Vec and NNDP-GloVe were found to have inferior
performance when compared to NNDP-IN for the MI event age
and sex classifications. NNDP-ELMo provided the worst perfor-
mance for MI event and sex categories when compared to other
NNDP approaches. We expected this because of ELMo structure’s
locality bias, as discussed in Section 8.2.

Interestingly, NNDP-GPT-2, NNDP-ALBERT[d], and NNDP-
ALBERT[i] provided the same or better accuracy and G-mean
scores (0.83 and 0.70 for GPT-2, 0.78 and 0.68 for ALBERT[d], 0.79
and 0.69 for ALBERT[i]) when compared to NNDP-IN (0.78 and
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0.68) for the MI event age group classification. As described in
Section 4.1, processed literature data for NNDP-variants assign
gene names at the first location and all associated sentences
are located next to each gene name. Transformer models look
at all words for each sequence equally via their self-attention
mechanisms, so correlations between associated words for each
gene name could be captured by transformer structures without
the locality bias (i.e., window size of Word2Vec, and sequen-
tial representations of ELMo). The transformer’s self-attention
mechanisms enable accurate capturing of the correlations, gene
names and associated words. However, NNDP-IN provided su-
perior performance for the race and sex classifications (0.97
and 0.99 of G-mean scores, respectively) when compared to
NNDP-GPT-2, NNDP-ALBERT[d], NNDP-ALBERT[i] (0.96 and 0.98
of G- mean scores for all NNDP-GPT-2, NNDP-ALBERT[d], and
NNDP-ALBERT[i], respectively).

8.4. Missing data simulation results

We validated the generalizability of our NNDP-based methods
using missing data. As shown in Figs. 12–16, NNPD-IN provided
the best separation capability with 10% of data missing, for all
categories: race, MI event age group, and sex. Fig. 13 shows
PCA separated the race classes as well as NNPD-IN. However,
for the sex category, PCA failed to separate male and female
classes as these two classes were clustered together. UMAP with
RP performed poorly as it was not able to separate all three
categories when missing data were present.

Fig. 14 Shows PCA and UMAP on NNDP-Word2Vec and NNDP-
FastText which both performed well in cluster separation for
the race, MI event, and sex categories, but the distances be-
tween clusters were closer than they were for NNDP-IN-PCA
and NNDP-IN-UMAP. PCA on NNDP-GloVe and performed well
in cluster separation between European and Black for the race
category. PCA and UMAP on NNDP-GloVe resulted in some degree
of class separation for the MI event and sex classes, but their
cluster separations were not as clear as for the other conven-
tional NNDP approaches. Figs. 15 and 16 show PCA and UMAP
with contextual embedding method-based NNDPs—NNDP-ELMo,
NNDP-GPT-2, and NNDP-ALBERT[d], and NNDP-ALBERT[i]. The
contextual embedding methods completely failed to separate the
MI event age and sex classes. However, NNDP-GPT-2-UMAP and
NNDP-ALBERT[i]-UMAP showed new clusters for the sex category
when compared to other embedding models’ results. The male
and female classes were not well separated, although there is
some semblance of clusters.

For quantitative comparison of the various methods for the
missing data simulation rather than visualizations of classification
separation, we show in Tables 7–8 performance metrics similar to
Tables 5–6, which used complete data. In Table 7, similar to the
visualization results, NNDP-IN showed good performance for all
three category classifications. As shown in Tables 7–8, all NNDP’s
performance metrics are nearly identical to those with the no-
dimension-reduced data, shown in the first row, except for the
MI event age group classification. This is expected, as 10% of
the data were missing, but still good performance overall and
especially when compared to the other methods. PCA had the
poorest performance for the missing data for all three metrics,
as shown in Table 7. Given that as much as 10% missing data
did not negatively affect the performance of NNDP, this result
further demonstrates the feasibility and generalizability of the
NNDP approach.

Interestingly, NNDP-GloVe with 10% missing data showed the
best MI event age classification even though NNDP-GloVe visual-
izations provided poor separation between MI event age groups.
We expect this is because GloVe’s embedding space is geometri-
cally the most stable when compared to other unique word-based
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Fig. 12. Visualization result using NNDP methods (NNDP-IN-PCA, NNDP-IN-UMAP, NNDP-OUT-PCA, NNDP-OUT-UMAP) on missing SNP data for race (a, d, g, j), MI
event age group (b, e, h, k), and sex (c, f, i, l) categories.
embedding models (Mimno & Thompson, 2017; Wendlandt et al.,
2018), as GloVe considers global word-to-word co-occurrence
probabilities. However, considering that PCA and UMAP aim to
preserve the most significant information from the data (Cheng
et al., 2022; Dong et al., 2022; Spencer et al., 2020), GloVe’s
global word-to-word co-occurrence probabilities may reduce the
significant correlations between gene names, which consequently
leads to inferior visualization results when compared to NNDP-IN.
We show in Table 4(b) the characteristics of the GloVe’s global
word-to-word co-occurrences via semantic analysis.

We found that transformer-based contextual embedding
method-based NNDPs—NNDP-GPT-2, NNDP-ALBERT[d], and
NNDL-ALBERT[i] with 10% missing data resulted in good per-
formance for the MI event age and sex classification tasks even
though their visualizations failed to separate different clusters,
as shown in Fig. 16. Because the transformer’s self-attention
mechanisms look for all words for each sequence equally, we
expected that transformers would enable stable embedding space
584
to represent searched words. However, we found that NNDP-GPT-
2, NNDP-ALBERT[d], and NNDP-ALBERT[i] included sub-word-
biased representations, as shown in Table 4(e)–(g). We expected
the sub-word-biased representation to reduce the correlation
between genes and robustness of visualization for those cases
with 10% missing data.

9. Discussion and conclusion

In this paper, we proposed an unsupervised literature-based
SNP data visualization/dimensionality reduction method – the
NNDP method – that can capture both global and local struc-
tures. For the method validation, we designed a literature embed-
ding model. We compared the literature-embedding-based NNDP
against traditional methods: PCA, UMAP, and RP. We also com-
pared the literature embedding model-based NNDP with NNDP
variants using six other popular embedding models: Word2Vec,
GloVe, FastText, ELMo, GPT-2, and ALBERT. As far as we are aware,
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Fig. 13. Visualization results using other methods (basic PCA/UMAP, RP-PCA, RP-UMAP) on missing SNP data for race, MI event age group, and sex categories.
this is one of the first studies to conduct dimensionality reduc-
tion and data visualization on different modes of data, especially
genetic data, using literature databases along with textual in-
terpretability. Our NNDP-based methods outperformed all other
popular dimensionality reduction and visualization models such
as PCA and UMAP examined in this work, as determined by both
visual and quantitative metrics to separate various categorical
classes. Our method was shown to provide the most efficient
separation of the genotype data structures in SNP data even when
it is confronted with significant missing data. Our NNDP method
also provides textual interpretability to understand how each
embedding model performs the visualization tasks, via semantic
analysis.

NNDP-based methods, especially NNDP-IN, captured both
global and local structures whereas PCA and UMAP do not. Even
when they are combined to capture both global and local struc-
tures, PCA and UMAP visualization results were not as informa-
tive or accurate as those of NNDP. Another advantage of our
method was that by incorporating hidden risks obtained from
585
literature for MI, we found an interesting observation. NNDP-IN-
UMAP, NNDP-Word2Vec-UMAP, NNDP-GPT-2-UMAP, and NNDP-
ALBERT-UMAP[i] showed that the younger cohort of Black people
had similar high risks for MI as the older Black people, but this
was not observed for the younger European subjects. However,
our visualization is based on literature word embeddings, and
some literature (Dyke, 2018; Garcia et al., 2021; Lee et al., 2016)
suggested that young blacks have more MI preva lence than
other races, and old age is a risk factor for MI (Hajar, 2017).
Considering socioeconomic factors that were reported as the
most significant factor to the high prevalence of MI in young
Black (Garcia et al., 2021), our visualization results may have
correctly captured socioeconomic-related word representations.
Understanding hidden risks using statistical and literature anal-
ysis is significant for avoiding bias in heritage-based disease risk
estimations (Baud et al., 2017). Such informative results were not
possible with other visualization techniques.

Our NNDP-based methods can potentially be used in many
applications that require the unraveling of hidden structures of
population data for accurate risk prediction and genetic data QC
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Fig. 14. Visualization results using NNDP-Word2Vec-PCA, NNDP-Word2Vec-UMAP, NNDP-GloVe-PCA, NNDP-GloVe-UMAP, NNDP-FastText-PCA, and NNDP-FastText-
UMAP on missing SNP for race (a, d, g, j, m, p), MI event age group (b, e, h, k, n, q), and sex (c, f, i, l, o, r) categories.

586
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Fig. 15. Visualization results using NNDP-ELMo-PCA, NNDP- ELMo-UMAP, NNDP-GPT-2-PCA, and NNDP-GPT-2-UMAP on missing SNP for race (a, d, g, j), MI event
ge group (b, e, h, k), and sex (c, f, i, l) categories.
rocedures. QC is typically used to remove false positives aris-
ng from poor quality DNA, hidden confounders, and genotyping
rtifacts (Morris et al., 2010). We have simulated this type of
cenario by deliberately removing 10% of SNP data. Both PCA and
MAP were unable to handle missing data whereas NNDP was
till able to provide good separations of different categories for
oth visualization and classification tasks. Furthermore, PCA and
MAP are not robust for large SNP data, as shown in Appendix.
ur NNDP method provides not only better visualization perfor-
ance but also textual interpretability of visualization results,
hich facilitates explainable artificial intelligence. As genomic
equencing technologies advance, there will be a rapid increase in
he volume and complexity of genetic data, hence, more advanced
isualization approaches that can handle high-dimensional ge-
etic data with better interpretability will become more critical
O’Donoghue et al., 2018).

Our proposed NNDP method has shown robust visualization
ith textual interpretability. This capability will enable better
587
classification and categorization, as complex biological datasets
can be better visualized and interpreted. Our approach can be
combined with ChatGPT (Brown et al., 2020) since all modern
ChatBot models are trained using large embedding models such
as GPT-3 (Brown et al., 2020; Suhaili et al., 2021). A ChatBot
system, when combined with a better visualization approach,
has the potential to not only obtain relevant information quickly
and efficiently, but also to unravel those complex structures
into visually interpretable results. Moreover, since textual rep-
resentations are also used to generate text scripts for a given
image or image scenes for a text set (Yu et al., 2022), our NNDP
approach can be used with medical image and bio-signals such
as electrocardiogram for more interpretable disease risk analysis
and decision-making on various datasets with ChatBot systems.
Additionally, since automatic speech recognition systems use tex-
tual representation to display machine-recognized utterances for

given speech sets (Bang et al., 2022; Moon et al., 2019; Nassif
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Fig. 16. Visualization results using NNDP-ALBERT[d]-PCA, NNDP-ALBERT[d]-UMAP, NNDP-ALBERT[i]-PCA, and NNDP-ALBERT[i]-UMAP on missing SNP for race (a, d,
g, j, m, p), MI event age group (b, e, h, k, n, q), and sex (c, f, i, l, o, r) categories.
et al., 2019), our NNDP approach can be combined with conversa-
tional artificial intelligence assistant systems to aid human tasks
more efficiently.

Our semantic analysis showed that a well-trained embedding
model successfully captures the dynamics of SNP data, and that
the visualization results can be interpreted via textual analysis.
Our method’s limitation is that the model requires the SNPs
to be identified and referenced in the literature. Since some
SNPs do not have any references in the literature, the SNPs are
not identifiable. However, the limitation can be addressed with
advanced algorithms such as SNP interaction algorithms (Elgart
et al., 2022; Silva et al., 2022). Moreover, in our prior work (Moon
et al., 2023, 2021), we trained a skip-gram-based literature-based
embedding model to reduce the dimension of phenotype data
four times without any deterioration of the classification results.
It was shown that our NNDP approach can be efficiently used
for not only genetic data but also other various data without any
prior knowledge of the data.
588
In summary, there are several novelties with the proposed
method. First, we developed an efficient method to comb through
literature data such as the published abstracts to extract rele-
vant information such as genes associated with specific diseases,
which in our case was MI. Our approach also allowed inter-
pretability of the visualized results using semantic correlations.
While a simple back-propagation neural network was used for
NNDP-IN, we were able to efficiently reduce the dimension of
high-dimensional data without any degradation in the perfor-
mance of the proposed method. NNDP-IN showed even more
impressive visualization results when compared to the state-of-
the-art transformer neural network-based NNDP (GPT-2 and AL-
BERT). Considering NNDP-IN’s embedding vectors captured topi-
cally related words for each query in the semantic analysis, the
visualization performance of NNDP-IN may improve by making
its window size bigger since conventional word embedding mod-
els’ bigger window size can capture more topical information
between words (Levy & Goldberg, 2014).
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Table 7
Quantitative performance of Race, MI event age group, and sex classifications With 10% of Data Missing Simulation for NNDP-IN, NNDP-OUT, PCA, UMAP, and RP.

(a) Race (b) MI Event Age Group (c) Sex

Method Model Acc. Sens. Spec. G. Acc. Sens. Spec. G. Acc. Sens. Spec. G.

Original 64000-dimensional data

SVM-linear 0.96 0.96 0.99 0.97 0.75 0.76 0.73 0.74 0.97 1.00 0.95 0.97

SVM-rbf 0.94 0.94 0.98 0.96 0.73 1.00 0.00 0.00 1.00 1.00 1.00 1.00
SVM-poly 0.94 0.94 0.98 0.96 0.73 1.00 0.00 0.00 1.00 1.00 1.00 1.00
LR 0.94 0.94 0.98 0.96 0.77 0.96 0.26 0.49 0.99 1.00 0.99 0.99

MLP 0.96 0.96 0.99 0.97 0.75 0.91 0.33 0.53 0.91 0.90 0.92 0.91

NNDP (IN)

SVM-linear 0.94 0.94 0.98 0.96 0.74 0.83 0.51 0.64 0.94 0.93 0.94 0.94

SVM-rbf 0.94 0.94 0.98 0.96 0.75 0.88 0.41 0.58 0.96 0.95 0.96 0.96
SVM-poly 0.94 0.94 0.98 0.96 0.75 0.88 0.41 0.58 0.96 0.95 0.96 0.96
LR 0.94 0.94 0.98 0.96 0.75 0.85 0.50 0.65 0.93 0.90 0.95 0.93

MLP 0.94 0.94 0.98 0.96 0.77 0.86 0.51 0.66 0.95 0.94 0.95 0.94

*p-value 0.10 1.05 0.00

NNDP (OUT)

SVM-linear 0.94 0.94 0.98 0.96 0.72 0.88 0.30 0.51 0.74 0.57 0.83 0.69
SVM-rbf 0.94 0.94 0.98 0.96 0.73 0.97 0.06 0.23 0.73 0.34 0.93 0.56

SVM-poly 0.94 0.94 0.98 0.96 0.73 0.97 0.06 0.23 0.73 0.34 0.93 0.56

LR 0.94 0.94 0.98 0.96 0.71 0.91 0.18 0.39 0.74 0.56 0.83 0.68

MLP 0.94 0.94 0.98 0.96 0.72 0.90 0.25 0.47 0.72 0.60 0.78 0.69
*p-value 0.10 0.09 0.00

PCA

SVM-linear 0.91 0.91 0.97 0.94 0.58 0.67 0.35 0.47 0.42 0.24 0.51 0.29
SVM-rbf 0.16 0.16 0.72 0.33 0.28 0.01 0.99 0.06 0.65 0.00 1.00 0.00

SVM-poly 0.16 0.16 0.72 0.33 0.28 0.01 0.99 0.06 0.65 0.00 1.00 0.00

LR 0.85 0.85 0.95 0.90 0.61 0.71 0.34 0.48 0.42 0.22 0.53 0.27

MLP 0.66 0.66 0.90 0.77 0.65 0.80 0.26 0.43 0.47 0.19 0.62 0.26

*p-value 0.00 0.00 0.00

UMAP

SVM-linear 0.83 0.83 0.95 0.88 0.72 0.83 0.41 0.58 0.63 0.09 0.91 0.27

SVM-rbf 0.80 0.80 0.93 0.87 0.73 0.97 0.06 0.15 0.65 0.00 1.00 0.00

SVM-poly 0.80 0.80 0.93 0.87 0.73 0.97 0.06 0.15 0.65 0.00 1.00 0.00

LR 0.81 0.81 0.94 0.87 0.71 0.84 0.37 0.55 0.63 0.06 0.93 0.21

MLP 0.82 0.82 0.94 0.88 0.72 0.85 0.36 0.54 0.60 0.19 0.81 0.39
*p-value 0.00 0.01 0.00

RP (Gaussian Distribution)

SVM-linear 0.92 0.92 0.97 0.94 0.66 0.80 0.28 0.47 0.69 0.47 0.81 0.62
SVM-rbf 0.94 0.94 0.98 0.96 0.73 1.00 0.01 0.03 0.71 0.40 0.88 0.59

SVM-poly 0.94 0.94 0.98 0.96 0.73 1.00 0.01 0.03 0.71 0.40 0.88 0.59

LR 0.93 0.93 0.98 0.95 0.71 0.93 0.11 0.32 0.70 0.42 0.84 0.60

MLP 0.91 0.91 0.97 0.94 0.66 0.83 0.22 0.41 0.67 0.47 0.78 0.61

*p-value 0.10 0.01 0.00

*p-value was computed based on the best accuracies between original 6400-dimensional data set and each method.
Since transformer structures such as GPT-2 and ALBERT are
ppropriate for a large dataset, developing transformer-based
iterature embedding models would be significant for more ad-
anced genetic data visualization. It should be noted, however,
hat the original GPT-2 and ALBERT structures provided inferior
erformance for the sex category when compared to NNDP-IN.
he reasons why transformer-based models did not provide good
istinction between male and female classes can be explained
y semantic analysis. Table 4 shows that GPT-2 and ALBERT
rovided sub-word-biased related words for the query ‘male + fe-
ale’ instead of topically and categorically related words. Hence,
ur textual interpretability using semantic analysis could pro-
ide significant insights into designing appropriate transformer-
tructure-based literature embedding models for better genetic
ata visualization capabilities.
In addition, the NNDP-based methods remained robust even

hen we simulated having as much as 10% of the data missing,
589
while PCA and UMAP fared poorly in this simulation. Given that
literature text data and gene data all lead to high-dimensional
data, interpretable and explainable visualization of data to un-
ravel hidden structures and dynamics are of high importance and
is an unmet need. The proposed NNDP is a solution for these
purposes.
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Table 8
Quantitative performance of Race, MI event age group, and sex classifications With 10% of Data Missing Simulation for NNDP-Word2Vec, NNDP-GloVe, NNDP-FastText,
NNDP-ELMo, NNDP-GPT-2, and NNDP-ALBERT.

(a) Race (b) MI Event Age Group (c) Sex

Method Model Acc. Sens. Spec. G. Acc. Sens. Spec. G. Acc. Sens. Spec. G.

NNDP-Word2Vec

SVM-linear 0.95 0.95 0.98 0.96 0.76 0.86 0.52 0.66 0.94 0.94 0.94 0.94
SVM-rbf 0.94 0.94 0.98 0.96 0.77 0.91 0.40 0.60 0.94 0.95 0.94 0.94
SVM-poly 0.94 0.94 0.98 0.96 0.77 0.91 0.40 0.60 0.94 0.95 0.94 0.94
LR 0.95 0.95 0.98 0.96 0.78 0.92 0.42 0.62 0.94 0.93 0.95 0.94
MLP 0.94 0.94 0.98 0.96 0.77 0.89 0.45 0.63 0.93 0.92 0.93 0.93

*p-value 0.43 0.69 0.00

NNDP-GLOVE

SVM-linear 0.95 0.95 0.98 0.96 0.76 0.84 0.53 0.67 0.96 0.96 0.96 0.96
SVM-rbf 0.94 0.94 0.98 0.96 0.76 0.90 0.38 0.58 0.95 0.94 0.95 0.95

SVM-poly 0.94 0.94 0.98 0.96 0.76 0.90 0.38 0.58 0.95 0.94 0.95 0.95

LR 0.94 0.94 0.98 0.96 0.76 0.89 0.42 0.61 0.95 0.94 0.96 0.95

MLP 0.94 0.94 0.98 0.96 0.76 0.88 0.46 0.63 0.95 0.95 0.95 0.95

*p-value 0.43 0.70 0.00

NNDP-FastText

SVM-linear 0.95 0.95 0.98 0.96 0.76 0.85 0.52 0.67 0.94 0.94 0.95 0.94
SVM-rbf 0.94 0.94 0.98 0.96 0.75 0.92 0.31 0.53 0.95 0.93 0.95 0.94
SVM-poly 0.94 0.94 0.98 0.96 0.75 0.92 0.31 0.53 0.95 0.93 0.95 0.94
LR 0.94 0.94 0.98 0.96 0.77 0.90 0.45 0.63 0.94 0.92 0.95 0.94
MLP 0.93 0.93 0.98 0.96 0.76 0.88 0.46 0.63 0.93 0.91 0.95 0.93

*p-value 0.43 0.70 0.00

NNDP-ELMo

SVM-linear 0.94 0.94 0.98 0.96 0.76 0.88 0.47 0.63 0.93 0.92 0.94 0.93
SVM-rbf 0.94 0.94 0.98 0.96 0.72 0.92 0.17 0.38 0.78 0.59 0.88 0.72

SVM-poly 0.94 0.94 0.98 0.96 0.72 0.92 0.17 0.38 0.78 0.59 0.88 0.72

LR 0.94 0.94 0.98 0.96 0.74 0.90 0.33 0.52 0.90 0.85 0.92 0.89

MLP 0.92 0.92 0.98 0.95 0.70 0.86 0.30 0.50 0.83 0.75 0.88 0.81

*p-value 0.10 0.70 0.00

NNDP-GPT2

SVM-linear 0.94 0.94 0.98 0.96 0.76 0.86 0.49 0.65 0.95 0.93 0.95 0.94
SVM-rbf 0.94 0.94 0.98 0.96 0.73 0.93 0.22 0.45 0.93 0.90 0.95 0.92

SVM-poly 0.94 0.94 0.98 0.96 0.73 0.93 0.22 0.45 0.93 0.90 0.95 0.92

LR 0.94 0.94 0.98 0.96 0.78 0.89 0.49 0.65 0.94 0.92 0.95 0.94

MLP 0.92 0.92 0.98 0.95 0.75 0.88 0.42 0.60 0.93 0.92 0.94 0.93

*p-value 0.10 0.69 0.00

NNDP-ALBERT[d]

SVM-linear 0.94 0.94 0.98 0.96 0.76 0.85 0.51 0.66 0.95 0.94 0.96 0.95
SVM-rbf 0.94 0.94 0.98 0.96 0.77 0.92 0.39 0.58 0.94 0.90 0.96 0.93

SVM-poly 0.94 0.94 0.98 0.96 0.77 0.92 0.39 0.58 0.94 0.90 0.96 0.93

LR 0.94 0.94 0.98 0.96 0.76 0.90 0.40 0.60 0.95 0.92 0.96 0.94

MLP 0.94 0.94 0.98 0.96 0.76 0.87 0.47 0.63 0.93 0.89 0.95 0.92

*p-value 0.10 0.70 0.00

NNDP-ALBERT[i]

SVM-linear 0.95 0.95 0.98 0.96 0.76 0.85 0.51 0.66 0.95 0.95 0.95 0.95
SVM-rbf 0.94 0.94 0.98 0.96 0.77 0.92 0.39 0.58 0.95 0.93 0.96 0.94

SVM-poly 0.94 0.94 0.98 0.96 0.77 0.92 0.39 0.58 0.95 0.93 0.96 0.94

LR 0.94 0.94 0.98 0.96 0.76 0.90 0.40 0.60 0.95 0.93 0.96 0.94

MLP 0.94 0.94 0.98 0.96 0.76 0.87 0.47 0.63 0.95 0.92 0.96 0.94

*p-value 0.43 1.05 0.00

*p-value was computed based on the best accuracies between original 6400-dimensional data set and each method.
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Appendix

As a further investigation, we classified SNP data based on
race, MI event age group, and sex in order to examine the clas-
sification performance and computation time as the dimension
size varied (128*Q-dimension where Q ranged from 50 to 250
and each step size Q = 50), as shown in Tables A.1 and A.2.

http://www.ncbi.nlm.nih.gov/gap
http://www.ncbi.nlm.nih.gov/gap
http://www.ncbi.nlm.nih.gov/gap
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Table A.1
Classification performance (averaged G-mean score ± its standard deviation [MIN and MAX G-Scores for all G-mean scores of each model] for all ML models) on
ach 128*Q-dimensional SNP data set (Q ranges from 50 to 250).

Model N (original data’s dimension = 128*Q)

6400 (Q=50) 12,800 (Q=100) 19,200 (Q=150) 25,600 (Q=200) 32,000 (Q=250)

Race (*) NNDP
(IN)

0.96 ± 0.00
[0.96, 0.97]

0.96 ± 0.00
[0.96, 0.97]

0.96 ± 0.00
[0.96, 0.97]

0.96 ± 0.00
[0.96, 0.97]

0.96 ± 0.00
[0.96, 0.97]

NNDP
(OUT)

0.96 ± 0.00
[0.96, 0.96]

0.96 ± 0.00
[0.96, 0.96]

0.96 ± 0.00
[0.96, 0.96]

0.96 ± 0.00
[0.96, 0.96]

0.96 ± 0.00
[0.96, 0.96]

NNDP
(Word2Vec)

0.96 ± 0.00
[0.96, 0.97]

0.96 ± 0.00
[0.96, 0.96]

0.96 ± 0.00
[0.96, 0.97]

0.96 ± 0.00
[0.96, 0.97]

0.96 ± 0.00
[0.96, 0.97]

NNDP
(GloVe)

0.96 ± 0.00
[0.96, 0.97]

0.96 ± 0.00
[0.96, 0.96]

0.96 ± 0.00
[0.96, 0.96]

0.96 ± 0.00
[0.96, 0.96]

0.96 ± 0.00
[0.96, 0.96]

NNDP
(FastText)

0.96 ± 0.00
[0.96, 0.96]

0.96 ± 0.00
[0.96, 0.96]

0.96 ± 0.00
[0.96, 0.96]

0.96 ± 0.00
[0.96, 0.96]

0.96 ± 0.00
[0.96, 0.97]

NNDP
(ELMo)

0.96 ± 0.00
[0.96, 0.96]

0.96 ± 0.00
[0.96, 0.96]

0.96 ± 0.00
[0.95, 0.96]

0.96 ± 0.00
[0.96, 0.96]

0.96 ± 0.00
[0.96, 0.96]

NNDP
(GPT-2)

0.96 ± 0.00
[0.96, 0.97]

0.96 ± 0.00
[0.96, 0.96]

0.96 ± 0.00
[0.95, 0.96]

0.96 ± 0.00
[0.96, 0.96]

0.96 ± 0.00
[0.96, 0.97]

NNDP
(ALBERT[d])

0.96 ± 0.00
[0.96, 0.96]

0.96 ± 0.00
[0.96, 0.96]

0.96 ± 0.00
[0.96, 0.96]

0.96 ± 0.00
[0.96, 0.96]

0.96 ± 0.00
[0.96, 0.96]

NNDP
(ALBERT[i])

0.96 ± 0.00
[0.96, 0.96]

0.96 ± 0.00
[0.96, 0.96]

0.96 ± 0.00
[0.96, 0.96]

0.96 ± 0.00
[0.96, 0.96]

0.96 ± 0.00
[0.96, 0.96]

PCA 0.63 ± 0.26
[0.40, 0.95]

0.66 ± 0.23
[0.46, 0.95]

0.65 ± 0.23
[0.46, 0.96]

0.64 ± 0.21
[0.45, 0.95]

0.65 ± 0.20
[0.45, 0.92]

UMAP 0.90 ± 0.01
[0.89, 0.91]

0.88 ± 0.01
[0.87, 0.89]

0.87 ± 0.00
[0.86, 0.87]

0.85 ± 0.02
[0.82, 0.87]

0.87 ± 0.00
[0.87, 0.87]

RP 0.96 ± 0.00
[0.96, 0.96]

0.96 ± 0.00
[0.96, 0.96]

0.95 ± 0.00
[0.95, 0.96]

0.95 ± 0.00
[0.95, 0.96]

0.95 ± 0.00
[0.95, 0.96]

MI event age group NNDP
(IN)

0.61 ±0.04
[0.57, 0.68]

0.57 ± 0.06
[0.52, 0.66]

0.52 ± 0.10
[0.40, 0.64]

0.48 ± 0.11
[0.35, 0.60]

0.41 ± 0.14
[0.24, 0.55]

NNDP
(OUT)

0.51 ± 0.08
[0.42, 0.59]

0.45 ± 0.11
[0.32, 0.55]

0.33 ± 0.21
[0.07, 0.55]

0.26 ± 0.16
[0.07, 0.48]

0.18 ± 0.12
[0.06, 0.34]

NNDP
(Word2Vec)

0.60 ± 0.03
[0.57, 0.66]

0.56 ± 0.06
[0.49, 0.66]

0.51 ± 0.10
[0.39, 0.62]

0.44 ± 0.15
[0.26, 0.58]

0.39 ± 0.19
[0.16, 0.57]

NNDP
(GloVe)

0.60 ± 0.03
[0.58, 0.66]

0.57 ± 0.05
[0.52, 0.66]

0.52 ± 0.10
[0.40, 0.63]

0.48 ± 0.15
[0.3, 0.63]

0.40 ± 0.23
[0.12, 0.61]

NNDP
(FastText)

0.61 ± 0.03
[0.60, 0.67]

0.57 ±0.07
[0.49, 0.69]

0.49 ±0.15
[0.31, 0.65]

0.42 ±0.17
[0.21, 0.61]

0.36 ±0.23
[0.08, 0.57]

NNDP
(ELMo)

0.52 ± 0.05
[0.48, 0.59]

0.39 ±0.07
[0.30, 0.47]

0.25 ±0.13
[0.10, 0.46]

0.17 ±0.10
[0.06, 0.32]

0.16 ±0.09
[0.07, 0.30]

NNDP
(GPT-2)

0.59 ± 0.07
[0.52, 0.70]

0.50 ±0.13
[0.35, 0.65]

0.41 ±0.25
[0.11, 0.67]

0.35 ±0.22
[0.09, 0.62]

0.29 ±0.20
[0.06, 0.59]

NNDP
(ALBERT[d])

0.62 ±0.03
[0.59, 0.68]

0.56 ±0.09
[0.45, 0.67]

0.51 ±0.13
[0.36, 0.65]

0.42 ±0.16
[0.23, 0.57]

0.40 ±0.21
[0.14, 0.58]

NNDP
(ALBERT[i])

0.62 ± 0.05
[0.57, 0.69]

0.53 ± 0.10
[0.42, 0.66]

0.48 ± 0.17
[0.27, 0.66]

0.42 ± 0.22
[0.15, 0.61]

0.39 ± 0.26
[0.07, 0.62]

PCA 0.34 ± 0.22
[0.07, 0.53]

0.40 ± 0.09
[0.29, 0.49]

0.34 ± 0.18
[0.12, 0.51]

0.33 ± 0.17
[0.12, 0.51]

0.26 ± 0.21
[0.00, 0.46]

UMAP 0.52 ± 0.17
[0.31, 0.68]

0.35 ± 0.21
[0.10, 0.55]

0.15 ± 0.12
[0.0, 0.29]

0.16 ± 0.13
[0.0, 0.28]

0.24 ± 0.19
[0.00, 0.41]

RP 0.42 ± 0.08
[0.35, 0.55]

0.37 ± 0.10
[0.26, 0.49]

0.26 ± 0.17
[0.06, 0.45]

0.25 ± 0.17
[0.05, 0.43]

0.22 ± 0.15
[0.04, 0.39]

Sex NNDP
(IN)

0.99 ± 0.00
[0.98, 0.55]

0.96 ± 0.00
[0.96, 0.97]

0.94 ± 0.00
[0.93, 0.94]

0.90 ± 0.00
[0.89, 0.90]

0.87 ± 0.00
[0.87, 0.88]

NNDP
(OUT)

0.91 ± 0.01
[0.90, 0.92]

0.81 ± 0.03
[0.78, 0.84]

0.72 ± 0.06
[0.65, 0.78]

0.65 ± 0.08
[0.55, 0.73]

0.59 ± 0.10
[0.47, 0.69]

NNDP
(Word2Vec)

0.98 ± 0.00
[0.97, 0.98]

0.94 ± 0.00
[0.94, 0.95]

0.90 ± 0.01
[0.89, 0.91]

0.86 ± 0.00
[0.86, 0.87]

0.83 ± 0.01
[0.82, 0.85]

NNDP
(GloVe)

0.98 ± 0.00
[0.98, 0.98]

0.95 ± 0.01
[0.94, 0.96]

0.92 ± 0.01
[0.91, 0.94]

0.89 ± 0.02
[0.87, 0.92]

0.86 ± 0.02
[0.84, 0.89]

NNDP
(FastText)

0.98 ± 0.00
[0.97, 0.98]

0.94 ± 0.00
[0.94, 0.95]

0.90 ± 0.01
[0.89, 0.92]

0.86 ± 0.01
[0.85, 0.87]

0.82 ± 0.02
[0.80, 0.84]

NNDP
(ELMo)

0.90 ± 0.05
[0.85, 0.97]

0.81 ± 0.08
[0.72, 0.92]

0.72 ± 0.12
[0.59, 0.88]

0.65 ± 0.15
[0.48, 0.85]

0.62 ± 0.14
[0.45, 0.80]

NNDP
(GPT-2)

0.97 ± 0.01
[0.97, 0.98]

0.94 ± 0.02
[0.92, 0.94]

0.90 ± 0.04
[0.85, 0.94]

0.86 ± 0.05
[0.79, 0.91]

0.81 ± 0.08
[0.71, 0.89]

NNDP
(ALBERT[d])

0.97 ± 0.00
[0.97, 0.98]

0.94 ± 0.01
[0.93, 0.96]

0.90 ± 0.02
[0.88, 0.93]

0.86 ± 0.02
[0.84, 0.89]

0.84 ± 0.03
[0.81, 0.87]

NNDP
(ALBERT[i])

0.97 ± 0.00
[0.97, 0.98]

0.95 ± 0.01
[0.94, 0.96]

0.92 ± 0.01
[0.91, 0.94]

0.89 ± 0.02
[0.87, 0.91]

0.86 ± 0.03
[0.82, 0.90]

PCA 0.64 ± 0.27
[0.32, 0.88]

0.23 ± 0.09
[0.12, 0.32]

0.45 ± 0.11
[0.31, 0.55]

0.43 ± 0.05
[0.37, 0.48]

0.49 ± 0.01
[0.48, 0.50]

UMAP 0.30 ± 0.24
[0.00, 0.52]

0.73 ± 0.05
[0.67, 0.78]

0.75 ± 0.02
[0.72, 0.77]

0.65 ± 0.03
[0.61, 0.69]

0.52 ± 0.08
[0.43, 0.60]

RP 0.70 ± 0.02
[0.68, 0.72]

0.60 ± 0.02
[0.58, 0.63]

0.55 ± 0.03
[0.51, 0.58]

0.46 ± 0.07
[0.37, 0.53]

0.42 ± 0.09
[0.32, 0.51]
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Table A.2
Dimensionality reduction operation time for each category’s 128*Q-dimensional SNP data set (Q ranges from 50 to 250).
Category N (dimension =

128*Q)
NNDP
(IN)

NNDP
(OUT)

NNDP
(Word2Vec)

NNDP
(Glo-Ve)

NNDP
(Fast-
Text)

NNDP
(ELMo)

NNDP
(GPT-2)

NNDP
(ALBERT[d])

NNDP
(ALBERT[i])

PCA UMAP RP

Race (*)

50 (6,400) 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.07 0.85 0.02

100 (12,800) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.12 0.94 0.02

150 (19,200) 0.02 0.02 0.03 0.02 0.02 0.03 0.03 0.02 0.02 0.18 1.07 0.03

200 (25,600) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.24 1.22 0.03

250 (32,000) 0.03 0.03 0.04 0.03 0.04 0.03 0.04 0.04 0.03 0.30 1.40 0.04

MI event age
group (*)

50 (6,400) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.07 1.02 0.02

100 (12,800) 0.03 0.03 0.02 0.02 0.02 0.02 0.03 0.02 0.03 0.14 0.97 0.03

150 (19,200) 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.17 1.14 0.03

200 (25,600) 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.03 0.20 1.21 0.03

250 (32,000) 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.26 1.27 0.04

Sex

50 (6,400) 0.07 0.07 0.06 0.06 0.06 0.08 0.07 0.06 0.06 0.20 4.94 0.07

100 (12,800) 0.12 0.12 0.11 0.13 0.13 0.12 0.13 0.13 0.13 0.38 8.48 0.17

150 (19,200) 0.19 0.18 0.18 0.17 0.18 0.18 0.25 0.18 0.18 0.58 12.27 0.25

200 (25,600) 0.27 0.24 0.24 0.27 0.24 0.24 0.26 0.25 0.25 0.74 15.93 0.30

250 (32,000) 0.29 0.31 0.29 0.29 0.31 0.32 0.34 0.31 0.29 0.91 18.99 0.37
B

C

C

C

D

All performance evaluations were computed based on the 5-fold
test data sets. Table A.1 shows averaged G-mean scores from the
ML models examined—SVC-linear, SVC-kernel, SVC-poly, LR, and
MLP. Table A.2 shows the computation time as the dimension was
reduced from 128*Q-dimensional SNP data to 128-dimensional
SNP data.

As shown in Table A.1, NNDPs, excepting NNDP-OUT, provided
he best performance of averaged G1 score for all Q cases for
the 128*Q-dimensional data (Q ranges from 50 to 250) for all
race, MI event age group, and sex classifications. UMAP provided
similar good performance on MI event age group classification
when compared to NNDP at Q=50. However, UMAP’s perfor-
mance significantly degraded from Q>=100 while NNDP main-
tained its good performance even for all higher-dimensional data.
As shown in Table A.2, NNDP provided the fastest computation
time (∼65.50 times) on the test data set. RP provided similarly
efficient computation time compared to NNDP-IN. UMAP fared
the worst, as it resulted in significantly higher computational
times compared to either RP or NNDPs.
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