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Novel Density Poincare Plot Based Machine
Learning Method to Detect Atrial Fibrillation
From Premature Atrial/Ventricular Contractions

Syed Khairul Bashar

and Ki H. Chon

Abstract—Objective: Detection of Atrial fibrillation (AF)
from premature atrial contraction (PAC) and premature ven-
tricular contraction (PVC) is difficult as frequent occur-
rences of these ectopic beats can mimic the typical ir-
regular patterns of AF. In this paper, we present a novel
density Poincaré plot-based machine learning method to
detect AF from PAC/PVCs using electrocardiogram (ECG)
recordings. Methods: First, we propose the generation of
this new density Poincaré plot which is derived from the
difference of the heart rate (DHR) and provides the overlap-
ping phase-space trajectory information of the DHR. Next,
from this density Poincaré plot, several image process-
ing domain-based approaches including statistical central
moments, template correlation, Zernike moment, discrete
wavelet transform and Hough transform features are used
to extract suitable features. Subsequently, the infinite latent
feature selection algorithm is implemented to rank the fea-
tures. Finally, classification of AF vs. PAC/PVC is performed
using K-Nearest Neighbor, Support vector machine (SVM)
and Random Forest (RF) classifiers. Our method is devel-
oped and validated using a subset of Medical Information
Mart for Intensive Care (MIMIC) lll database containing 10
AF and 10 PAC/PVC subjects. Results- During the segment-
wise 10-fold cross-validation, SVM achieved the best per-
formance with 98.99% sensitivity, 95.18% specificity and
97.45% accuracy with the extracted features. In subject-
wise scenario, RF achieved the highest accuracy of 91.93%.
Moreover, we further validated the proposed method us-
ing two other databases: wearable armband ECG data and
the Physionet AFPDB. 100% PAC detection accuracy was
obtained for both databases without any further training.
Conclusion: Our proposed density Poincaré plot-based
method showed superior performance when compared with
four existing algorithms; thus showing the efficacy of
the extracted image domain-based features. Significance:
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From intensive care unit’s ECG to wearable armband ECGs,
the proposed method is shown to discriminate PAC/PVCs
from AF with high accuracy.
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[. INTRODUCTION

TRIAL fibrillation (AF) is the most common arrhythmia
A and has become a global health interest as the prevalence
and the associated mortality have grown exponentially in the
past decade [1]. AF affects about 33.5 million people worldwide
including 3 million Americans [2]. However, the true prevalence
of AF is unknown because in many patients the condition is
asymptomatic and remains undetected [3]. AF is also known to
increase the risk for stroke, heart failure and other comorbidities
[4]. Since AF is characterized by highly variable ventricular beat
intervals, several algorithms for the automatic detection of AF
is based on QRS beat interval variability [S]-[11].

However, Premature atrial and ventricular contractions (PAC
and PVC, respectively), which are common benign causes of
rhythm irregularity, can mimic the irregular beat pattern typical
of AF [12]. PACs occur when an ectopic focus originating in
the atrium leads to premature activation of the atria prior to
typical sinoatrial node activation whereas a PVC occurs when a
similar process occurs in the ventricle [13]. Rhythm-based AF
detectors are prone to produce false AF alarms in the presence of
premature beats [8], [14]. As a result, the effect of these ectopic
beats needs to be carefully considered as these are known to
confound the automated AF decision [15].

There have been many studies for beat detection for different
types of cardiac arrhythmias using the MIT-BIH arrhythmia
database. In [16] multiresolution wavelet transform is used to
extract QRS complex features and based on those features,
support vector machine (SVM) along with neural network is
implemented to classify normal, left bundle branch block, right
bundle branch block and paced beats. Shannon entropy, log
energy entropy, Renyi entropy and Tsallis entropy, computed on
wavelet packet decomposition; are used with random forest to
classify five different types of beats [ 17]. Morphological features
extracted from ECG signal components are used with linear
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discriminant analysis in [18]. Wavelet transform, independent
component analysis along with RR interval information are
used as extracted features to classify different heartbeats with
SVM in [19]. Higher order cumulants of the ECG beats are
modeled by linear combination of Hermitian basis function in
[20] and the model parameters are used as features to classify
five different hear beats. In [21], principal component principal
component analysis (PCA) of the segmented ECG beats are
performed while PCA on the higher order statistics coefficients
is applied for arrhythmia detection in [22]. In [23], combination
of linear and nonlinear features along with SVM and neural
network classifiers are used to recognize five types of arrhythmia
beats. A diverse set of features including higher order statistics,
morphological features, Fourier coefficients and higher order
statistics of the wavelet packet coefficients are used in [24] to
identify different arrhythmia beats.

However, none of these above-mentioned methods considered
arrhythmia beat detection in the presence of AF. As a result, it
is not clear how these methods will perform when AF is present
and whether they can reduce false positives for AF detection
even with PAC/PVC. Arrhythmia beat detection (i.e., PAC/PVC
detection) when there is AF rhythm can become challenging. So
the accuracy of the algorithms in the presence of ectopic beats
needs to be established [12].

In order to address this problem, we have presented in this
paper a novel image domain-based method to detect PAC/PVCs
from AF. To the best of our knowledge, we are one of the first
to propose this density Poincaré plot approach to discriminate
AF from PAC/PVCs. The ECG recordings obtained from three
distinct different data sets: critically ill MIMIC III database, the
wearable armband data and the Physionet AFPDB, were used
in this study. From the proposed density Poincaré plots, several
image domain-based approaches were used to extract suitable
features followed by infinite latent feature selection method to
rank the individual features. Next, the extracted features were
fed into several machine learning classifiers to detect PAC/PVC.
Finally, we compared our method with four state-of-the-art AF
detection methods.

Il. DATASET DESCRIPTION

Three different data sets are used in this study:

A. MIMIC Il Waveform Subset

ECG recordings obtained from 20 subjects of the Medical
Information Mart for Intensive Care (MIMIC) III data set were
used. MIMIC III is a large open source medical record database
publicly available in PhysioNet [25]. MIMIC III contains de-
identified health-related data from patients who stayed in critical
care units of the Beth Isracl Deaconess Medical Center between
2001 and 2012 [26]. However, no annotations were provided
for this data set. As a result, ECG signals were annotated
by board certified physician specializing in AF management
(DDM). According to the physician’s annotations, 10 subjects
had AF whereas the rest 10 had PAC/PVCs. For this study, we
do not discriminate PACs from PVCs; hence they are referred
as PAC/PVC here. Moreover, these 20 subjects were identified

to have sepsis according to the international classification of
diseases, ninth revision (ICD-9) codes [27]. The ECG recordings
were sampled at 125 Hz and the measuring unit was millivolt
(mV).

B. Wearable Armband Database

The armband ECG data were collected using a recently
developed novel wearable armband device [28]. It consists of
three pairs of carbon black dry electrodes for recording three
different ECG channels. The study data consisted of seven
participants (over 21 years of age) recruited at the University
of Massachusetts Memorial Health Care (UMMHC) system.
Among the subjects, two subjects had persistent AF whereas five
had PAC/PVC rhythms. Informed consents were obtained from
the participants prior to their consented procedures. Trained
research staff instructed the participants on the appropriate use
of the wearable armband device and discussed study procedures.
Next, the armband was placed on the left upper arm of the
participants while they were simultaneously monitored on ECG
telemetry prior to their procedure. Research staff returned to the
participant’s bedside after the procedure and prior to hospital
discharge, they placed the ECG armband and an FDA cleared
mobile cardiac telemetry patch (Cardiac Insight, Inc) on the
participant, and asked each participant to wear both devices for
14 days. The ECG recordings from the patch were used as the
reference. This protocol was approved by the institutional review
board of the University of Massachusetts Memorial Hospital
(HO0013799). The armband had sampling frequency of 1000
Hz; ECG signals were down-sampled to 250 Hz.

C. AFPDB From Physionet

AFPDB data set has been collected from the publicly available
paroxysmal atrial fibrillation prediction challenge, which was
part of the Computers in Cardiology in 2001 [25]. The learning
set consists of 30-minutes of two-channel ECG recordings from
25 subjects. ECG tracings were obtained from the Holter record-
ings with sampling frequency of 128 Hz. The ECG segments
were collected just prior to the onset of paroxysmal AF (PAF).
Itis shown that for most of the cases, the frequency of PAC events
increases before the onset of PAF. Details about this data set can
be found in [29]. From the ECG recordings prior to PAF onset,
we divide the recordings into two-minutes of non-overlapping
segments and observed whether or not the individual two-minute
segment contained PACs. By following this procedure, we ob-
tained 124 segments from 13 different subjects and used these
two-minute segments to evaluate the specificity (PAC detection
accuracy) of our proposed method.

Ill. METHODS

Our method consists of several major steps: preprocessing
and generation of the density Poincaré plot, feature extraction,
feature selection and classification. From the density Poincaré
images, 79 features are extracted using 5 different approaches.
Next, infinite latent feature selection algorithm is applied to rank
the features. Finally, different classification algorithms are used
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Fig. 1. (Left) Representative examples of 15-second ECG segments
and the corresponding HR. (Right) Poincaré plots obtained from the HR.
(a-c): from PAC, (d-f): from PVC and (g-i): from AF segments.

to discriminate the AF vs. PAC/PVC segments using both the
selected and all features.

A. Preprocessing

ECG recordings are divided into 2 minutes non-overlapping
segments and all input ECG signals are checked for noise arti-
facts using an automated motion noise detection algorithm [30].
After the clean segments are detected, QRS peaks are obtained
by using the VERB algorithm, which performs ECG reconstruc-
tion to enhance the R-peak detection [31]. From the detected
peaks, heart rate (HR) is calculated and finally difference of the
HR (DHR) is obtained.

B. Density Poincaré Plot Generation

First, Poincaré plot is generated from the 2-minute input
ECG segments. From the DHR, Poincaré plot is generated by
connecting the two coordinates. The starting point coordinates
consist of current DHR beat as the X-axis coordinate and the
previous DHR beat as the Y-axis coordinate, and the ending
point coordinates consist of the next DHR beat as the X-axis
coordinate and the current DHR beat as the Y-axis coordinate.
The range of X and Y axis for the Poincaré plots are arbitrarily set
to [-80, 80] beats per minute (bpm). Details about the Poincaré
plot can be found in [13], [32].

Representative examples of ECG segments and the corre-
sponding HR along with Poincaré plots (obtained from 2-minute
ECG) are shown in Fig. 1 for PAC (a-c), PVC (d-f) and AF
(g-1) segments. From the figure, it is evident that for both of the
PAC and PVC segments, we have repeated triangular patterns
(i.e., kite shape in Fig. 1 (c) and Fig. 1 (f)) whereas for the AF
segments, the HR varies in a random manner (Fig. 1 (i)).

1000
500

- 0
200 400 600 800 1000

Fig. 2.
sity plots, respectively, for a sample PAC segment. (d-f) Similar plots for
an AF segment.

(a-c) Binary Poincaré plot, density Poincaré plot and 3-D den-

However, this pattern of well-behaved Poincaré plot will
misdetect PAC/PVCs if ‘kite shape is not obvious due to heart
rate trajectories that do not perfectly overlap with each other, or
due to other irregular heartbeats which may distort the repeated
triangular/kite shape. As a result, a new “Density” Poincaré
plot is proposed to better capture the overlapped trajectory
information of the binary Poincaré plot. Note that AF rhythms
are not likely to exhibit repeatable overlapped patterns whereas
PAC/PVC rhythms do. Thus, we use this density approach to
extract this additional information in addition to the kite shape
for better discrimination between AF and PAC/PVC rhythms.

To generate the density Poincaré plot, we first increase the
resolution of the plot to a predefined value of 1000 although any
high resolution can be used. Similar to the binary Poincaré plot,
anew line with pixel value 1 is drawn using the DHR coordinates
and stored in a temporary resolution buffer matrix. The width
of the line is arbitrarily set to 20. For each pair of coordinates, a
new line is generated and added to the buffer matrix. At the end
of this procedure, a matrix which has the summation of all the
lines generated from every DHR coordinate pair is obtained. This
matrix informs how many times the lines are overlapped, which
indicates the density of the overlap, hence, this matrix is defined
as the density Poincaré plot. Figs. 2 (b) and (e) show the density
Poincaré plots obtained from both the AF and PAC Poincaré
plots shown in Figs. 2 (a) and (d). From the figure, it can be seen
that the density plots now have varying colors which correspond
to different densities. The density distribution is more visible in
the 3-D density plot shown in Figs. 2 (c) and (f).

C. Feature Extraction

From the density Poincaré images, different features are
extracted using several image processing methods including
statistical moments, correlation with image templates, Zernike
moments, discrete wavelet transform and Hough transform.

1) Moment Based Features: We have used moment-based
features as our first statistical descriptive measurement. The
central moment-based features can be easily calculated and
widely used in bio-signal and image processing [33], [34]. The
central moments are defined as follows:
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Fig. 3. (Top row) 4 template images for PAC/PVCs. (Bottom row) 4
template images for AF.

The p'" central moment m, of a random variable X is
determined as [35]:

my = El(x — E[z])"] (1)

where E is the expected value and p is the order.

The “zeroth” central moment is 1 and the first central moment
is 0. From the density Poincaré images, the second, third and
fourth order central moments are calculated which are also
known as variance, skewness and kurtosis, respectively.

Since the inputis a 2D image, we first calculate different order
moments (n = 2, 3 and 4 i.e., 2nd, 3rd and 4th) based on the row
direction of the 2D image matrix and obtain a one-dimensional
vector of moments. Next, from this 1D vector, we calculate the
mean and variance to obtain one feature value for each moment
and obtain 6 features. By following similar procedure for the
column direction, 6 more features are calculated. Moreover, the
mean (i.e., the first non-central moment) of the input 2D image
is calculated and as a result, 13 features are obtained from the
statistical moment-based approach.

2) Template Correlation Based Features: Image template
correlation is popular in pattern recognition for image processing
[36], [37]. For this study, the idea is to calculate the 2D correla-
tion with some template images and use that correlation value as
the AF vs. PAC/PVC discriminating feature. The 2.D correlation
coefficient between an input image W and a template image 7',
both having m x n pixels, is calculated as the following [38]:

r = Zm Zn(W’m;" — W) (Tmn — T) _

Where W and T are the mean of the images W and T, respec-
tively.

From the density Poincaré images, 14 representative images
are visually selected as template images. Among these tem-
plates, 7 are selected from 4 PAC/PVC subjects and 7 are selected
from 3 AF subjects. Fig. 3 shows some of the representative
templates. These 14 template images are considered as the
training data for the correlation coefficient feature and excluded
from the testing data set.

For each input density Poincaré image, the 2D correlation
coefficient values with all the 14 template images are calculated
according to (2) and these correlation values are considered as
features; thus, resulting in 14 features for each input image. It is

@)

100

_CDO
QO
o

4 0.4 0.6
(a) (b)

200
150
100

50

0.4 0.6 0.8 0.4 0.6 0.8
(©) (d)

Fig. 4. Histograms of correlation coefficient with template #14 (a-b)
and template #9 (c-d). (a) and (c) are from AF segments whereas (b)
and (d) are from PAC/PVCs.

to be noted that before calculating the 2D correlation coefficient,
both images are normalized in [0, 1] range.

Fig. 4 shows the histogram distributions of the correlation
coefficients obtained from two different template images. Figs. 4
(a-b) show the correlation coefficient distribution with template
#14 for AF and PAC/PVC segments, respectively. Figs. 4 (c-d)
show similar distributions obtained from correlation with tem-
plate #9 for AF and PAC/PVC segments, respectively. From the
histogram distributions, it is clear that the correlation coefficient
distributions tend to span different ranges for AF and PAC/PVC
segments although there are some overlaps.

3) Zernike Moments: Zernike moments are the mapping of
an image onto a set of complex Zernike polynomials [39] and
are widely used in image retrieval [40], face recognition [41],
extracting shape properties of masses [42] etc.

From an input image, Zernike moments are computed using
three steps: computation of radial polynomials, computation
of Zernike basis functions and finally, computation of Zernike
moments by projecting the image onto the basis functions [39],
[42].

First, Zernike radial polynomials are calculated. The real-
valued 1D radial polynomial R,,,,(p) is defined as:

(n—|ml)/2

> -y

s=0
" (n—s)! )
si((n+|m[)/2 = s)!((n — [m])/2 = s)!

n—2s (3)

Here n is a non-negative integer and called the order. M denotes
repetition which is an integer satisfying constrains n — |m| =
even and |m| <= n.

Using the radial polynomial equation, the complex-valued 2D
Zernike basis functions are formed as the following which are
defined within a unit circle:

Vam(p,0) = Ram (p)e’™, |p| <1 “
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Fig. 5.
disk.

Magnitude plots of some low-order Zernike moments in the unit

Complex Zernike moments of order n and repetition m are
defined as

n+1
T

2 1
Zonm = /0 /0 F0,0) V(o O)pdpdd  (5)
Here f(x,y) is the image function. Zernike moments can be
regarded as an inner product between the image function and
the Zernike basis function.

For digital images, the integrals are replaced by summations
and the image coordinates are normalized into [0,1] by a map-
ping transform. The discrete form of the Zernike moments of an
image size N x N is given as follows:

N-1N-1

Zum = LSS pa ) Vi (. 9)

AN

=0 y=0

N-1N-1

n+1 Z Z (2, y) Rumpaye 7m0 (6)

A
N =0 y=0

Where A is a normalization factor and 0 < pg,, < 1.
The transformed distance p,, and the phase 0, at the pixel
(x,y) are given by

V(22— N+1)24+ (N —1—2y)?

Py = N
N—1-2y
0py = tan™ ' | ————2 7
y = tan (23:—N+1> ™

In this paper, the magnitudes of the Zernike moments are used
as features as they are proper descriptors of shape characteristics
[42]. The magnitude plots of some low order Zernike moments
in the unit disk are illustrated in Fig. 5. Details about Zernike
moments can be found in [39], [42].

LL2 | LH2
LL1 LH1 LH1
HL2 | HH2
HL1 HH1 HL1 HH1
Input image Level-1 Level-2

Fig. 6. Two-level wavelet decomposition structure for a sample density
Poincaré image.

4) Discrete Wavelet Transform Features: Discrete
wavelet transform (DWT) has become a popular mathematical
tool for feature extraction from signals and images [43],
[44]. DWT analyzes the signal or images at different scales
and provides time-frequency spectral information [45]. The
two-dimensional (2D) DWT for images consists of two general
stages. First, a 1D DWT is applied to the input image followed
by vertical subsampling to obtain the low-pass subband (L) and
the high-pass subband (H). Next, another 1D DWT is applied to
L and H followed by horizontal subsampling and four subbands
namely LL, LH, HL and HH are obtained, respectively
[46]. These 4 subbands matrices are called approximation,
horizontal, vertical and diagonal coefficients, respectively. The
entire frequency spectrum of the original image is covered by
those four sub-bands. In this study, the 2D DWT of the density
Poincaré image has been performed using the Daubechies 4
(DB4) wavelets and two-levels of wavelet decomposition has
been performed (Fig. 6).

Fig. 7 shows the four coefficients at two levels for a sample
PAC density Poincaré image while Fig. 8 shows the same for a
sample AF image.

After the DWT, from each coefficient matrix, the spectral en-
ergy and entropy are calculated. Entropy is a statistical measure
of randomness and can be used to characterize the texture of the
input image. Entropy is defined as — > p x log2(p), where “p”
contains the normalized histogram counts which represents the
probability. Our assumption is that by calculating entropy and
energy from different DWT coefficients, we can obtain features
which can be used to classify AF vs. PAC/PVCs. Moreover,
normalized entropy is calculated which is the entropy after
normalizing the DWT coefficient matrices from [0, 1] range.
As a result, from 2 levels of decomposition, 8 energy features
and 16 entropy features are obtained.

5) Hough Transform Features: Hough transform is a pop-
ular method for extracting global features such as straight lines,
circles, etc. from an image [47], [48]. Standard Hough transform
(SHT) is widely used in computer vision and pattern recognition
[49], [50]. It is a voting process where each point belonging to
the patterns votes for all the possible patterns which pass through
that point. Finally, these votes are accumulated and the pattern
receiving the maximum vote is recognized as the desired pattern
[51].

For a N x N binary image, the straight lines are
defined as

p=xzcosl+ ysinb (8)
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Fig. 7.

(d)
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(Left) The input PAC density image. (a-d) Four coefficients obtained from level 1 of the DWT. (e-h) Four coefficients obtained from level 2

of the DWT. The four coefficients are approximation, horizontal, vertical and diagonal, respectively.

Fig. 8.

(b) (©) (d)

®
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(Left) The input AF density image. (a-d) Four coefficients obtained from level 1 of the DWT. (e-h) Four coefficients obtained from level 2 of

the DWT. The four coefficients are approximation, horizontal, vertical and diagonal, respectively.

where (z,y) is the coordinates in the XY plane, 6 denotes
the angle the normal line makes with X-axis and p is the
perpendicular distance from the origin.

In the SHT, (p, 0) is defined as the parameter space. Com-
putation of the SHT consists of three major parts [S1]: (1)
determining the parameter values and accumulating the bins
in the parameter space, (2) finding the local maxima which
represent line segments and (3) extracting the line segments.
The SHT provides a parameter space matrix (called Hough
transform matrix) whose rows and columns correspond to p and
0 respectively [52]. Fig. 9 shows the Hough transform matrix
obtained from both PAC and AF density images.

From this Hough transform matrix, 13 statistical features are
extracted using the process described in “section III-C-1: Mo-
ment Based Features. Moreover, entropy of the Hough transform
matrix is also used; resulting in a total of 14 features from the
SHT.

D. Feature Selection

Feature selection plays an important role in machine learn-
ing as the performance of machine learning methods heavily
depends on the choice of features. Different features can en-
tangle and hide the different explanatory factors of variation

200
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(b) Hough transform matrix obtained from a PAC image shown
a). (d) Hough transform matrix obtained from an AF image shown in

behind the data [53]. There are several feature selection methods
available in the literature. In this study, we have chosen a
recently developed feature selection method called infinite latent
feature selection (ILFS). This method is based on probabilistic
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latent graph-based feature selection algorithm that performs the
ranking by considering all the possible subsets of features.
Relevancy is modeled as a latent variable in this method. ILFS
consists of three major steps. At first, a discriminative quanti-
zation process is performed which maps the raw feature values
to a countable nominal set of tokens. Next, an undirected fully
connected graph is created where each node represents one fea-
ture. Weights are learnt automatically by a learning framework
which is based on a variation of the probabilistic latent semantic
analysis. Finally, a ranking is done considering all possible
paths among the nodes while investigating the redundancy of
the features. Details of the ILFS method can be found in [53].

E. Classification

From the five different feature extraction approaches, a total
of 79 features are calculated. These features include 13 from
statistical moments, 14 from correlation with templates, 14 from
Zernike moments, 24 from DWT and 14 from standard Hough
transform. These features are next fed into different machine
learning classifier models. Moreover, classifiers with only the
selected features from the ILFS algorithm are also studied. The
studied classifiers include support vector machine (SVM), K-
nearest neighbor (KNN) and random forest (RF).

1) K-Nearest Neighbor Classifier: K-NN classifier is an
supervised machine learning method with desirable computa-
tional speed along with acceptable classification accuracy [54].
Here “K” refers to the number of samples to be used for the
classification task. For any new sample, distances from “K”
closest neighbors are calculated and based on the majority
voting, that new test sample is classified.

Let for a training point z;eD, the class label is denoted
as ¢"ieC where ¢ = 1,2,.,n. The set of all training points
belonging to class cis denoted by C.. and |C..| = n... The K-NNs
of a data point z¢ X from a set S form the set 'y (). I(.) is an
indicator function defined as follows:

1, if cond is true

I(cond) = , . ©)
0, if cond is false
Here cond is some condition to be satisfied [55]. The basic K-NN
classification rule can be described as: For a test point y; if the
K-NNs of y; in the training set D form the set T2 (y;) then the
predicted class label of y; can be denoted as:
¢Y" = argmax

Z I(C(wi) =¢)
cel,2,....,.C

" el R (ys)

(10)

For calculating the similarity condition, most popular “Eu-
clidean” distance along with “city-block™ distances are consid-
ered here. “City-block™ is also known as Manhattan distance
or absolute value distance. Moreover, the number of nearest
neighbors “K” is also varied to obtain best performance.

2) Support Vector Machine Classifier: Support vector ma-
chine (SVM) is a very popular and well-established classifier for
binary problems where a maximum margin between the training
and test data is constructed [56]. The samples which are closest
to the decision boundary are called the support vectors.

Let vector x denotes a test sample to be classified and its
label is denoted by ¢, where ce{+1,—1}. Now, for a given
set of training data, {(x;,¢;),%i =1,2,....,1}, the separating
hyperplanes can be obtained by maximizing the margin, which
is the minimization of the following function [56]

1
J(w, &) = inw—i—CZ& (11)
with the following constraints:
ci(wix+b)>1—¢& where & >0 (12)

Here w is the weight vector, b is a constant, C' is a positive
regularization parameter and ¢; is the slack variable.

Applying the Lagrange multipliers «;, for vector x, the solu-
tion of the decision function can be expressed as

Fx) =) aieix]x+b (13)

For the nonlinear SVM, a nonlinear mapping function ¢(x)
is used to map the input data into a higher dimensional feature
space, thus making the samples more separable:

N
F0) = e K(x;,%) +b (14)
j=1

where x; are the support vectors and K (x;,x) is the kernel
function. For radial basis function, K (x;,x) = exp(—y||x; —
x/|?). Details of the SVM can be found in [57]. For this study,
both the linear and RBF SVM were used.

3) Random  Forest Classifier: Bootstrap-aggregated
(bagged) decision trees can reduce the effects of overfitting
and improves generalization by combining the results of many
decision trees [58].

In the bagging learning concept, 7' weak learners are trained
over subsets drawn with replacement from the training set and
their outputs are voted to produce a predictive estimate of the
model. By doing this bagging and voting, it is shown to decrease
the variance of the model without increasing the bias as the weak
learners are provided with different training sets; thus, resulting
in diverse ensemble [59].

From the original set of M training instances, a bootstrap of
M instances is drawn uniformly at random with replacement for
every tree t e {1,2,...., T}. During the training process, at each
node of every tree, D' < D features are randomly selected from
D available features and the best split is decided using those D’
features. For testing, a new sample is run down all the 7" trees
of the forest; thus producing 7" predictions for the test sample.
At the end, these predictions are aggregated through voting to
make the final prediction.

[V. EXPERIMENTAL RESULTS

In this section, we first present the feature selection results
which is followed by AF vs. PAC/PVC classification performed
for both segment-wise and subject-wise scenarios. Our MIMIC
IIT waveform subset consists of 20 subjects with 10 AF and 10
PAC/PVC; resulting in a total of 500 AF and 340 PAC/PVC
segments. However, after the 14 templates are discarded from
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Fig. 10.  Bar chart of all the feature weights determined by the ILFS.

the data set, our final database now consists of 493 AF and 333
PAC/PVC segments.

For segment-wise cross validation, widely used k-fold cross
validation is used in this study. In k-fold, data is divided into k
number of non-overlapping segments. Every time (k — 1) folds
are used for training and the rest fold is used for testing. The
entire process is repeated over k times. k = 10 is used in this
study. For subject-wise cross validation, leave-one-subject-out
procedure is followed as this is the best approach to account for
subject variability.

In order to evaluate the classification performance, the fol-
lowing binary classification accuracy measures are calculated:

Sensitivity = TP/(TP 4+ TN)

Specificity = TN/(TN + FP)

Accuracy = (TP +TN)/(TP+ FN +TN + FP)
Positive predictive value (PPV) =TP/(TP + FP)

Negative predictive value (NPV)=TN/(TN + FN)
(15)

where T'P is true positive, T'N is true negative, F'P is false
positive, and F'N is false negative.

A. Feature Selection Results

During each step of the k-fold cross validation, ILFS based
feature selection is performed using only the training data. The
ILFS algorithm ranks every feature from the total pool of 79
features and assigns each feature a weight. Fig. 10 shows the
bar chart with the ILFS weights for individual feature for a
particular fold. From these ranked features, top 10 features
for each validation stage are selected automatically. For the
particular fold shown in Fig. 10, 4 correlation-based features, 1
Zernike moments-based feature and 5 wavelet transform-based
features are ranked as the top 10 features.

Next, the top 10 ranked features for each of the 10-folds of
the training data are analyzed and it is found that 9 features are
common in all those 10 folds. As a result, these 9 features are
selected later for the subject-wise classification. Among these

9 features, 4 comes from the correlation features, 1 from the
Zernike moment feature and rest 4 are from the DWT features.
These are: correlation coefficient values with templates #8,
#9, #10 and #14, amplitude of zernike moment (at n = 2, m
= 0), normalized entropy of level-2 vertical, approximation,
horizontal and level-1 approximation coefficients of the DWT.

B. Classification Results

Classification result is divided into two parts: (1) segment-
wise k-fold cross validation and (2) subject-wise classification.
For both scenarios, AF vs. PAC/PVC detection performance
using the abovementioned machine learning classifiers are pre-
sented for both the automatically selected (via ILFS) and all 79
features.

1) Segment-Wise Classification Results: Segment-wise
classification results include 10-fold cross validation results for
all 79 features as well as the automatically selected 10 features
by the ILFS algorithm.

a) KNN classifier: For the KNN classifier, the hyperparameter
value (K) was varied for optimal decision. It was found that
“Manhattan” distance (i.e., city-block distance) with K = 7
provided the best results. During 10-fold cross-validation, with
10 selected features, KNN classifier achieved sensitivity, speci-
ficity, accuracy, PPV and NPV of 97.57%, 73.56%, 87.89%,
84.92% and 95.41%, respectively. When all the 79 features
were used, KNN achieved sensitivity, specificity, accuracy, PPV
and NPV of 84.01%, 64.55%, 76.16%, 78.01% and 74.16%,
respectively.

b) SVM classifier: For the SVM, both the linear and radial
basis kernels were used. Linear SVM resulted in 94.93% sen-
sitivity, 90.35% specificity and 93.09% accuracy for the 10
features while for 79 features, we found 98.18% sensitivity,
93.98% specificity and 96.48% accuracy.

For the RBF SVM, with 10 features and sigma = 1, 97.97%
sensitivity, 91.26% specificity and 95.27% accuracy was ob-
tained. When all the 79 features were included, RBF SVM
achieved sensitivity, specificity and accuracy value of 98.99%,
95.18% and 97.45%, respectively with sigma = 3.50.

¢) Random forest: For the random forest classifier, the number
of trees and number of predictors to sample were varied. With
the selected 10 features, RF obtained 97.78% sensitivity, 90.38%
specificity and 94.79% accuracy. When all the 79 features were
used, the accuracy increased to 97.09%. 100 and 200 tree were
used for 10 and 79 features, respectively. Number of trees is
an important parameter in the RF model. To determine the
optimal number of trees, the out-of-bag (OOB) classification
error was calculated. Fig. 11 shows the OOB error for 10-fold
cross-validation when all 79 features are used. From the figure
it can be seen that OOB error decreases with the number of
grown trees and near 200 trees, the OOB error becomes flat.
Table I compares the classification accuracy, sensitivity, speci-
ficity, PPV and NPV for RF, SVM and KNN for both cases: 10
best selected features (from ILFS) and all 79 features. From the
table it is clear that RBF SVM achieved the best accuracy.

2) Subject-Wise Classification Results: The motivation
to perform subject-wise cross-validation is that AF/PAC/PVC
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TABLE | TABLE Il
PERFORMANCE OF DIFFERENT CLASSIFIERS: 10 AND 79 FEATURES SUBJECT-WISE CLASSIFICATION ACCURACY WITH 79 FEATURES
" . Linear | RBF
Classifier | KNN SVM SVM RF Subject | Segment | KNN svM | svm RF
Name (%) Linear (%) | RBF (%) (%) ID number (%) (%) (%) (%)
Sensitivity 97.57 94.93 97.97 97.78 AF #1 50 98 100 100 100
g Specificity | 73.56 | 90.35 91.26 90.38 AF #2 50 100 100 100 94
S | Accuracy | 87.89 | 93.09 95.27 94.79 AF #3 50 86 98 100 | 100
8
S | PPV 84.92 | 93.68 94.41 93.83 AF #4 50 20 82 94 100
NPV 95.41 | 92.46 96.87 96.6 AF #5 50 96 94 100 100
Sensitivity | 84.01 | 98.18 98.99 99.4 AF #6 50 98 90 92 94
g Specificity | 64.55 | 93.98 95.18 93.68 AL #7 | 50 98 100 100 | 100
5 [ Accuracy [ 7616 | 9648 97.45 97.09 AF#8 | 47 9787 | 100 | 5957 | 93.62
R PV [780L[ %605 [9687 [ 9593 T A T N KA
NPV 74.16 | 97.3 98.53 99.07 . . : :
PAC#1 |3 100 | 100 100 | 100
PAC #2 88.89 | 88.89 | 88.89 | 100
patterns and features can vary significantly depending on the 11222 :i 22 ?5) o fgo 330 ?20
cardiovascular health state of subjects. For the 20 subjects, .
1 -one-subject-out cross-validation is performed to account PACH @ 0o | 7143 |10 |10
cave-one-subject-o : pertormed tc : PAC #6 | 50 92 |78 100 | 98
for sub;ect variability. Eyery time tl?e.algonthm is trained w¥th mc# | 50 0 36 m 6
19 subjects and tested with the remaining one subject; the entire PACH | 19 2737 | 100 100 | 100
process is repeated 20 times and the average results are reported. PACH# | 5 100 | 100 100 | 100
Similar to the segment-wise scenario, different classifiers are PAC #10 | 50 70 100 100 | 100
implemented with 9 automatically-selected features and all of Mean Total 7551 | 8905 | 90.68 | 9103
79 features. =826

KNN classifier achieved 77.81% (K = 3) and 75.51% (K =
11) average accuracy across 20 subjects when 9 and 79 features,
respectively, were used. The “Manhattan” distance was selected
for both models. Linear SVM obtained 84.03% accuracy for
9 features while the performance improved to 89.05% for all
79 features. The RBF SVM achieved 85.16% accuracy when 9
features were used; hyper parameter sigma = 1.15. The accuracy
increased to 90.68% when all 79 features were provided with
sigma = 10.50.

Random forest achieved an overall accuracy of 8§9.56% for 9
selected features; 200 trees were used while 4 predictors were
used to sample in the model. When all the 79 features were
used, the accuracy was 91.93% with 100 trees. Fig. 12 shows the
bar-chart showing the overall accuracies obtained by different
classifiers for both scenarios: 9 and 79 features.

The accuracy for each subject when all 79 features are used,
is reported in Table II. The 10 AF and 10 PAC/PVC subjects

are denoted with “AF #” and “PAC #” followed by a segment
number. “Segment number” denotes the number of 2 minute
segments for each subject. Although for the PAC/PVC subjects,
the number of segments are uneven, the overall mean accuracy
is satisfactory.

C. Comparison With Existing Methods

In Table III, the performance of our proposed method is
compared with four previously published methods by examining
AF accuracy, PAC accuracy, and overall accuracy. For all these
methods reported, the leave-one-subject-out cross-validation
was used. The root mean square of successive differences, Shan-
non entropy, and turning point ratio calculated from RR intervals
were used in the statistical method [6] to determine AF. The
Lorentz plot generated from an RR series was described in [7] to
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TABLE Il
PERFORMANCE COMPARISON WITH EXISTING METHODS
Method AF Accuracy | PAC Accuracy Overall
(%) (%) Accuracy (%)
Statistical 95.60 26.96 6128
method [6]
Lorentz plot [7] 78.20 87.20 82.70
MCCE [11] 77.08 74.18 75.63
Predict
redictive 88.52 75.60 82.06
power of AR [11]
COSEn [8] 80.06 80.16 80.11
Our method 91.06 90.29 90.68
with SVM
Our method 93.87 90 91.93
with RF
TABLE IV
CLASSIFICATION PERFORMANCE ON ARMBAND DATA
Subject | No of Accuracy (%)
ID seg. Stat.
SVM SVM RF RF
Method
79 feat. | 9 feat. | 79 feat. | 9 feat. 161
AF #1 50 76 88 86 86 100
AF #2 14 100 92.86 | 64.29 100 100
PAC #1 | 55 100 100 100 100 85.45
PAC #2 | 55 100 100 100 100 96.36
PAC #3 | 10 100 100 100 100 100
PAC #4 | 30 100 100 100 100 96.67
PAC #5 | 50 100 100 100 100 100
Total
Mean _‘2’24 9657 | 9727 | 929 98 96.93

detect AF. Dynamics of RR intervals were analyzed to determine
AF episodes in [11]; auto regressive (AR) model order-based
percentage of predicted power was shown to have the best
performance in [11] while the minimum of corrected conditional
entropy (MCCE) obtained from RR series also achieved good
performance in [11], [60]. Finally, the coefficient of sample
entropy (COSEn) calculated from RR interval series [8] was
also compared in Table III. It is evident from Table III that our
density Poincaré image-based features obtained better results
for both RBF SVM and RF when compared to all the reported
methods.

D. Results on Armband Data

Next, we tested our proposed density Poincaré plot method
using the wearable armband ECG data (independent test set).
From this data set, we have two AF subjects and five PAC/PVC
subjects, resulting in 64 AF and 200 PAC/PVC segments of
2-minute duration. To classify AF vs. PAC/PVC segments from
the armband ECG data, the SVM and RF models were used for
both 79 and 9 selected features. It is to be noted that the RF and
SVM models were trained with the MIMIC III data (20 subjects)
and those trained models were directly applied to this armband
data without any further tuning, resulting in a true test scenario.
Table IV shows the performance of the SVM and RF on the
armband data. From the table it is evident that both SVM and
RF achieved better performance when 9 selected features were

used rather than all 79 features. This shows the importance of
feature selection for unknown/blind test data. When compared
with statistical method [6], both SVM and RF achieved better
overall accuracy (for 9 selected features); for PAC subjects, the
accuracy was 100%.

E. Results on AFPDB

Finally, we tested the proposed method using AFPDB, which
is another independent test set. From the AFPDB, we have 124
2-minute PAC segments from 13 different subjects. Since this
data set does not include any AF, we used it to evaluate the
specificity of our algorithm (i.e., how the method will work on
a different PAC/PVC data set). The same SVM and RF models
which were trained using only the MIMIC data, were directly
applied to AFPDB without any further tuning. For both of the
selected 9 features and all of the 79 features, the SVM and RF
detected all of the 124 PAC segments correctly, resulting in 100%
PAC detection accuracy (i.e., specificity).

V. DISCUSSION

We presented a novel density Poincaré plot-based approach
to classify AF from PAC/PVCs using three different data sets: a
subset of MIMIC III database, the wearable armband data and
AFPDB. Most common PAC/PVCs are known to have repeated
triangular kite shaped patterns in the Poincaré trajectory [7],
[13], [32]. However, binary Poincaré plot only provides the
triangular kite shape information and nothing about how many
times the triangular patterns were formed in the Poincaré phase
space. Moreover, other irregular heartbeats can also distort the
repeated triangular pattern. AF rhythms due to their inherent
random dynamics, do not exhibit repeatable random kite pat-
terns. Our proposed density Poincaré plot was used to extract
the overlapped information in the kite shape to better identify
PAC/PVCs since the binary Poincaré plot itself only provides
the kite shape information.

To detect AF from PAC/PVCs, a total of 79 features were
extracted from five different image processing approaches- sta-
tistical moments, template-based correlation, Zernike moments,
DWT and the Hough transform. Among these different types
of features, template-based correlation and DWT features were
most effective, which was also evident from the ILFS algorithm.
One of the underlying reasons is that for PAC/PVCs and AF, dis-
tinct triangular kite shaped and random patterns are generated,
respectively. As a result, high correlation values were obtained
when templates from two different categories were used. For the
DWT, when energy and entropy were calculated from different
levels of the coefficient matrices, the patterns became separable
as different resolutions provided more discriminatory informa-
tion.

During the density Poincaré plot formation, the resolution
was empirically set to 1000, although other resolutions can be
used. To study the effect of image resolution on the algorithm
performance, we have varied the resolution from 256 to 1500
and for each setting, the accuracy of the SVM classifier is
reported with leave-one-subject-out scenario. Fig. 13 (a) rep-
resents the bar chart showing the overall accuracy for four
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Fig. 13.  Bar charts of overall accuracies for (a) different image resolu-

tions and (b) different line widths.

different resolutions. From the figure, it can be seen that for all
four resolutions, the algorithm has performance over 90% and
the maximum accuracy is 92.03%. This shows that the density
Poincaré resolution is flexible and can be chosen depending on
the computational requirements, as higher resolution demands
higher computation.

Similar to the density Poincaré resolution, the width of each
new pixel line is set to 20 pixels to increase the probability that
it can overlap with nearby trajectories. To study how the algo-
rithm’s performance changes with line width, we have varied
the line width from 5 to 30 pixels, at a fixed resolution of 1000.
Fig. 13 (b) shows the bar charts of overall accuracies for different
line widths obtained from the SVM classifier during leave-one-
subject-out cross-validation. With the increase of line width,
the overall accuracies increase gradually as the overlap with
nearby trajectories increases; the highest accuracy of 92.39% is
obtained for a line width of 30, although others also have good
performance.

SVM with radial basis function achieved the best perfor-
mance with segment-wise 10-fold cross validation while for
leave-one-subject-out cross validation, RF had the best result.
During the segment-wise 10-fold classification, when all 79
features were used, the accuracies increased by a few percent
for all the reported classifiers except for KNN. Similarly, for
the subject-wise scenario, using all the 79 features improved
the performance when compared to using only the selected 9
features, except for KNN. This indicates that optimized feature
selection has higher impact on KNN. Moreover, when all 79
features were used, the accuracy of SVM RBF and RF did not
differ much for both segment-wise and subject-wise validations.

For RF, 79 features needed nearly twice computational time
than using 9 features. Moreover, the computational complexity
was much higher for the 79 feature model when compared to
9 feature model. The ~1% increase in overall accuracy is not
that significant if the additional computational cost and model
complexity are considered.

For generating the density Poincaré plots, ECG segments of
2-minute length were used. Since Poincaré density depends on
the number of repetitions, to study the effect of input data length
on the algorithm, we have varied the ECG segment length from
30 seconds to 2 minutes. For different ECG segment lengths,
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Fig. 14.  Bar chart showing accuracy for different input data lengths.

the leave-one-subject-out accuracy is calculated using the SVM
classifier. Fig. 14 shows the bar chart of overall accuracy, AF
accuracy, and PAC accuracy for different input data lengths.
From the figure, it can be seen that with the increase of data
(segment) length, the accuracy increases. For ECG segments
of 60 seconds, the accuracy becomes 87.64% which gradu-
ally goes up to 90.68% for 2-minute segments; the algorithm
achieved 81.58% overall accuracy for 30-second segments. This
shows that the algorithm is robust to data lengths above 60
seconds. It is to be noted that even for the 30 second segments,
the accuracy of our algorithm is comparable to the existing
methods with 2-minute ECG segments, as shown in Table III,
thus showing the efficacy of the proposed density Poincaré
features.

We compared our proposed method with four existing AF
detection methods. The Das et al. [6] method did not explicitly
focus on PAC detection, but rather tried to filter ectopic beats
as a preprocessing step to have better AF detection accuracy.
That is why that method had the highest AF detection accu-
racy (sensitivity) but low specificity (i.e., low PAC detection
accuracy) which is evident from Table III. On the other hand,
the Lorentz plot-based AF detection method had better PAC
detection accuracy than the statistical method. This is because
[7] used the 2D histogram-based technique to look for PAC’s
kite shaped patterns. However, it achieved lower AF detection
accuracy. As described in Cerutti ef al. [11], the individual
performance of MCCE and predictive power of AR models were
implemented, with results reported in Table III. Despite being
relatively simple, the AR model-based percentage of predicted
power achieved similar performance to Lorentz plots; MCCE
resulted in lower accuracy as reported in [11]. The COSEn-based
method achieved 80.11% overall accuracy. Our proposed den-
sity Poincaré image domain-based method achieved the highest
overall accuracy among all the compared methods (for either the
SVM or RF classifier).

We analyzed the overall mean accuracy during leave-one-
subject-out validation. For most of the subjects, the resulting
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accuracy was good which showed the efficacy of our proposed
method. However, for only a few subjects of the MIMIC data,
particularly PAC #3 and PAC #7, the subject-wise accuracy was
low. One possible reason could be that their PAC/PVC patterns
differ from other PAC/PVC subjects which may also be due
to noise contamination in the data. Another explanation can
be that since not all PAC/PVC subjects had the same number
of segments, our PAC/PVC data set may not have captured all
the pattern variations. However, the difference in the segment
number for PAC/PVC subjects is expected because PAC/PVCs
can be paroxysmal and difficult to find. Given the challenge
of capturing diverse PAC/PVC patterns, our proposed method
achieved high PAC/PVC detection accuracy which is evident
from the 100% specificity for the APFDB.

Leave-one-subject-out cross-validation was performed to pre-
vent subject-wise dependency. Moreover, once we trained the
model with the MIMIC data, the trained models were applied to
the armband and AFPDB data sets without any further tuning.
The high accuracy achieved on these two independent test data
sets showed that our model was not over-fitted to the MIMIC
data set and the proposed density Poincaré features captured the
different patterns of AF and PAC.

The results on the wearable armband data are particularly
interesting and show two important points. First, the selected
9 features achieved better results than all 79 features, which
shows the importance of feature selection. One possible expla-
nation for this can be that both models (with 79 and 9 features,
respectively) were tuned using the MIMIC III ICU data; thus,
the 79 feature based model achieved better results on MIMIC
than that with 9 features. However, when tested on a different
data set (armband) with pre-determined hyper-parameters, only
the important/significant features resulted in better performance.
Second, the proposed density Poincaré image-based method
used only R-R interval information. For wearable devices like
the armband, due to the characteristics of this device and extreme
muscle artifact, the P-waves are not always visible. Conse-
quently, the R-R interval-based PAC/PVC vs. AF classification
approach is necessary for continuous AF monitoring with the
wearable armband device.

There are some limitations of this study. We studied AF only
based on the surface ECG recordings where QRS complex-
based randomness is measured. However, based on the atrial
electrogram recordings, AF can be divided into four types as
shown in [61], [62]. This is beyond the current study as we
do not have atrial electrogram recordings in the MIMIC III
database. Based on only the surface ECG recordings, we cannot
discriminate among different types of AF. Further experiments
to study how different types of AF impact the algorithm are
certainly warranted. Moreover, future studies can incorporate
larger data sets and other approaches to cover different patterns
so that the overall accuracy during the subject-wise scenario can
be improved. With larger data sets consisting of PAC/PVC, deep
learning approaches involving for example, convolutional neural
networks or long short-term memory can be used. Certainly,
given the limited PAC/PVC data sets, we did not perform deep
learning to discriminate between AF and PAC/PVC in this
work.

VI. CONCLUSION

In this study, we introduced a novel machine learning ap-
proach using the density Poincaré plot to perform PAC/PVC
detection from AF. After the density Poincaré plots are generated
from the difference of the heart rate, several image domain-based
approaches are applied to extract suitable features. Moreover,
ILFS based feature ranking was performed. The extracted fea-
tures are fed into several machine learning-based classifiers
to distinguish PAC/PVC from AF. High accuracy is obtained
not only for 10-fold cross validation, but also for leave-one-
subject-out cross validation. The subject-wise cross validation
shows the effectiveness of the proposed method for unseen sub-
jects which is most important for real-life clinical applications.
When our proposed method is compared against four existing
algorithms, better classification performance is obtained which
demonstrates the efficacy of our method. Our density Poincaré
image-based method also achieved high accuracy on the wear-
able armband ECG data and Physionet AFPDB databases, fur-
ther validating the effectiveness of the proposed method. Future
research can incorporate other image domain-based feature ex-
traction methods to further improve performance.
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