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A B S T R A C T   

Background: Deep learning has been successfully applied to ECG data to aid in the accurate and more rapid 
diagnosis of acutely decompensated heart failure (ADHF). Previous applications focused primarily on classifying 
known ECG patterns in well-controlled clinical settings. However, this approach does not fully capitalize on the 
potential of deep learning, which directly learns important features without relying on a priori knowledge. In 
addition, deep learning applications to ECG data obtained from wearable devices have not been well studied, 
especially in the field of ADHF prediction. 
Methods: We used ECG and transthoracic bioimpedance data from the SENTINEL-HF study, which enrolled pa-
tients (≥21 years) who were hospitalized with a primary diagnosis of heart failure or with ADHF symptoms. To 
build an ECG-based prediction model of ADHF, we developed a deep cross-modal feature learning pipeline, 
termed ECGX-Net, that utilizes raw ECG time series and transthoracic bioimpedance data from wearable devices. 
To extract rich features from ECG time series data, we first adopted a transfer learning approach in which ECG 
time series were transformed into 2D images, followed by feature extraction using ImageNet-pretrained Den-
seNet121/VGG19 models. After data filtering, we applied cross-modal feature learning in which a regressor was 
trained with ECG and transthoracic bioimpedance. Then, we concatenated the DenseNet121/VGG19 features 
with the regression features and used them to train a support vector machine (SVM) without bioimpedance 
information. 
Results: The high-precision classifier using ECGX-Net predicted ADHF with a precision of 94 %, a recall of 79 %, 
and an F1-score of 0.85. The high-recall classifier with only DenseNet121 had a precision of 80 %, a recall of 98 
%, and an F1-score of 0.88. We found that ECGX-Net was effective for high-precision classification, while 
DenseNet121 was effective for high-recall classification. 
Conclusion: We show the potential for predicting ADHF from single-channel ECG recordings obtained from 
outpatients, enabling timely warning signs of heart failure. Our cross-modal feature learning pipeline is expected 
to improve ECG-based heart failure prediction by handling the unique requirements of medical scenarios and 
resource limitations.   
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1. Introduction 

Acute decompensated heart failure (ADHF) is a worsening of heart 
failure (HF)-related symptoms and signs, which include dyspnea, weight 
gain, edema, and fatigue. The hallmark of ADHF is a reduction in the 
ability of the heart to pump blood to vital organs, which causes serious 
symptoms, such as difficulty breathing and organ failure [1]. In the U.S., 
incidence increases with age, and the condition is associated with sub-
stantial morbidity, mortality, and impaired quality of life [2]. Chronic 
HF is the most common cause of hospitalization in elderly individuals, 
and the population burden of HF is increasing with the aging of the 
population [3]. In 2014, primary and comorbid HF caused 978,135 and 
3,370,856 hospitalizations, respectively [3]. 

An episode of ADHF is life-threatening, but with proper and timely 
treatment, the risks can be minimized. At the onset of ADHF, healthcare 
providers often use medication to address intravascular volume, such as 
using oral or intravenous loop diuretics to increase urine output and 
reduce vascular congestion [4]. Treatment for ADHF during hospitali-
zation greatly improves symptom burden, but a recent study demon-
strated that early recurrent ADHF after hospital discharge is common 
(51 % and 27 % for moderate and severe congestion in the first month 
after discharge) [5], and the mortality rate for individuals with recurrent 
ADHF is approximately 20% [6,7]. To identify HF patients at risk for 
recurrence, it is critical to accurately predict the likelihood of recurrent 
ADHF. 

Because ADHF is often characterized by severe dyspnea due to pul-
monary edema, ADHF detection requires a method to measure fluid 
accumulation in the lung. Transthoracic bioimpedance (TBI) used to 
measure fluid accumulation in the lung has been shown to be a more 
accurate measure of intrathoracic volume retention than alternative 
contemporary clinical approaches, including monitoring total body 
weight as a proxy for total volume status [8–10]. TBI is measured by 
using electrodes to inject a small (typically <1 mA) alternating current 
(AC) into the tissues and measuring the response. Along with bio-
impedance values, one‑lead electrocardiogram (ECG) data can also be 
obtained with electrodes that are positioned in the thorax. Thus, the aim 
of this analysis is to examine both bioimpedance and ECG data, with the 
aid of machine learning and deep learning, to predict ADHF. 

Recent progress in machine learning (ML), particularly deep learning 
(DL), has shown that computers (artificial intelligence algorithms) can 
outperform humans in fields that involve the analysis of complex high- 
dimensional datasets, such as image classification, audio recognition, 
and games [11,12]. Deep neural network (DNN) models, particularly 
convolutional neural network (CNN) [13,14] models, have shown high 
feasibility for medical applications in which the diagnosis consists of 
making observations from images, such as breast cancer classification 
and lung area detection, where they have unique advantages [15,16]. 
Although DNNs have been successfully applied to ECG data, previous 
applications have mainly focused on classifying rhythms, such as atrial 
fibrillation, from ambulatory patients in well-controlled clinical settings 
[17–19]. Although accurate and automatic detection of abnormal ECG 
patterns will greatly aid in making health care decisions, this approach 
does not fully capitalize on the potential of DL, which directly learns 
important features from raw input data without relying on a priori 
knowledge. Recent studies suggest that a patient's risk of cardiovascular 
death [20] or congestive HF [21] and cardiac contractile dysfunction 
[22] can be predicted by analyzing raw ECG signals. However, while HF 
is a progressive disease, detecting ADHF and related complications is 
attracting more attention in the field. To date, the prediction of wors-
ening ADHF and risk for rehospitalization using single-channel ECG 
signals from wearable devices has not been extensively studied. 

While DL is known to require a large amount of training data, clinical 
data are often limited and expensive to obtain. In studies with limited 
data sizes, transfer learning has been proven to be an effective way to 
reduce overfitting [23]. In particular, transfer learning has been widely 
adopted to build robust classifiers, mainly with image datasets. Notably, 

CNN models pretrained on the large numbers of natural images available 
in ImageNet [24] have been used as general-purpose image feature ex-
tractors to build classifiers for different domains [25–30]. However, 
effective pretrained models for time series data are still limited because 
no large-scale time series datasets are available (especially ECG data-
sets), making it challenging to extract rich features from time series data. 

We used the ECG data from the SENTINEL-HF study by Dovancescu 
et al. [31] to predict worsening HF, such as recurring hospitalization. 
SENTINEL-HF was a prospective study of patients discharged after 
hospitalization for ADHF, and it employed a wearable bioimpedance 
vest to monitor patients after discharge to identify sudden or gradual 
worsening of HF symptoms [32]. Decreased bioimpedance as a result of 
intrathoracic fluid accumulation was correlated with decompensating 
HF. Data from the SENTINEL-HF study provide an opportunity for cross- 
modal training, where better ECG features can be learned when feature 
learning utilizes ECG and bioimpedance together. This allows us to 
extract refined ECG features that enable us to predict whether patients 
experience another ADHF occurrence. 

In this study, we present a new ECG cross-modal feature learning 
pipeline, termed ECGX-Net (ECG X-modal Network), which utilizes 
image-based transfer learning for ECG time series for cross-modal 
feature learning. We leverage image-based pretrained models (Dense-
Net121 or VGG19) [33] for time series transfer learning by transforming 
1-D ECG time series data into 2-D image data using the Gramian Angular 
Summation Field (GASF) [34]. After data filtering, we perform cross- 
modal feature learning, where a multilayer perceptron (MLP) regres-
sor predicts transthoracic bioimpedance based on ECG. We demonstrate 
that our time series cross-modal feature learning pipeline can predict 
ADHF based on raw ECG recordings. 

2. Methods 

2.1. Data preparation 

We used 1318 ECG recordings from 37 different volunteers in the 
SENTINEL-HF study by Dovancescu et al. [31] as the source of the data. 
The SENTINEL-HF study enrolled patients (≥21 years) who were hos-
pitalized with a primary diagnosis of heart failure or with ADHF 
symptoms. The participants provided informed consent, and the insti-
tutional review committee approved the study protocol. 

Each ECG recording was approximately 5 min in length, contained 
approximately 250–350 heartbeats, and constituted 65,000–85,000 
readings, ranging from 2048 mV to − 2048 mV. The patients were 
anonymized, and the data were identified by a pseudonym of the device 
name. We used the MATLAB built-in function findpeaks with ‘MinPea-
kHeight’ as the 5 % quantile and ‘MinPeakDistance’ set to 100 to locate 
the S wave peaks, which were used to splice the five heartbeat ECG 
segments. In total, we extracted 7414 heartbeat ECG segments, 2999 of 
which were discarded due to artifacts during manual data selection. 
After feature extraction and PCA dimensional reduction, we discarded 
the ECG segments associated with other unrelated minor conditions, and 
selected the ECG segments associated with ongoing recurrent ADHF. 
These 1462 five heartbeat ECG time series were processed by clinical 
and morphological data filtering. Finally, 441 ECG samples taken after 
patient discharge were selected after data filtering to construct the 
classifiers. 

2.2. Image transformation from time series 

The five heartbeat ECG segments were processed through the min- 
max normalization shown in Eq. (1): 

X =
time series − min(time series)

max(time series) − min(time series)
. (1) 

We transformed the normalized time series X to 2D grayscale images 
with the Gramian Angular Summation Field (using the GASF() and 
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fit_transform() functions in the pyts.image 0.7.0 Python package). The 
GASF transformed the 1D time series to 2D images by scaling the time 
series to a normalized interval (Eq. (2)), and this was followed by con-
version into polar coordinates (Eqs. (3)–(4)) and then calculation of the 
angular perspective between each pair of time points, as shown in Eq. 
(5) [34]: 

x̃i =
xi − max(X) + xi − min(X)

max(X) − min(X)
, (2)  

ϕ = arccos(x̃i), − 1 ≤ x̃i ≤ 1, x̃i ∈ X̃, (3)  

r =
ti

N
, ti ∈ N, (4)  

GASFij = cos
(
ϕi +ϕj

)
. (5) 

After the time series were transformed into grayscale images, we 
duplicated the images three times to create the RGB images that formed 
the input to the CNN. We also compared the feature extraction ability 
and predictability with those of other image transformation methods: 
Markov Transition Field and Recurrence Plot (using MTF() and RP() 
from the same Python package). For the MTF, a time series X is divided 
into Q quantile bins, and each xi is assigned to the corresponding qj. By 
applying a first-order Markov chain, we can calculate a Q × Q adjacency 
matrix W with frequency wi,j (where a point in qj also falls into qi). In this 
way, a time series can be converted to a 2D MTF matrix by applying Eq. 
(6). Using the RP, a time series is first converted into its extracted tra-
jectories (Eq. (7)), where m is the dimension of the trajectories and τ is 
the time delay, and the RP is calculated as a pairwise distance matrix 
between trajectories (Eq. (8)) [35]. We used 10 % (the default) as the 
percentage threshold, ϵ: 

mTF =

⎡

⎣

wij|x1∈qi ,x1∈qj
⋯ wij|x1∈qi ,xn∈qj

⋮ ⋱ ⋮
wij|xn∈qi ,x1∈qj

⋯ wij|xn∈qi ,xn∈qj

⎤

⎦, (6)  

x→=
(
xi, xi+τ,…, xi+(m− 1)τ

)
,∀i ∈ {1,…, n − (m − 1)τ }, (7)  

RPij = θ
(

ϵ −
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒ x→i − x→j

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒

)

, ∀i,j ∈ {1,…, n − (m − 1)τ }. (8) 

For all three methods, the resultant RGB images were transformed 
and resized from the ECG data with varying temporal lengths into 224 ×
224-pixel images using the resize function from the cv2 module. The final 
images were used as the input to the CNN. 

2.3. Feature extraction and reduction 

We used CNN-based pretrained models (DenseNet121 [36] or 
VGG19 [33]) with ImageNet weights as our main approach to extract 
features from the resized RGB images of the ECG time series data. The 
VGG19 network we used consists of 16 convolutional layers and 1 FC 
layer. The 4096 features were extracted after layer FC1. Then, using the 
entire dataset (all 4415 data points), PCA was performed to reduce the 
feature dimension to 250, which was determined by plotting the 
explained variance and cumulative explained variance curves to reduce 
the effect of noise. For the DenseNet121 network, we used the same 
dataset and extracted 1024 features before the last FC layer. We used 
PCA to reduce the feature dimension to 170. 

We also used the pretrained methods VGG16 [33], ResNet50 [37], 
ResNet101 [37], and DenseNet169 [36] to replace DenseNet121 and 
VGG19. The models were imported from the keras.applications module, 
and their weights were trained on ImageNet. We also used the ImageNet- 
pretrained AlexNet [14] available in MATLAB. The features from 
ResNet50, ResNet101, and DenseNet169 were extracted before the last 
FC layer with dimensions of 2048, 2048 and 1664, respectively. The 
features from VGG16 and AlexNet were extracted after layer FC1, 

similar to VGG19, and had 4096 dimensions. PCA was then performed to 
reduce the feature dimensions to 500 for VGG16 and 150 for ResNet50, 
ResNet101, DenseNet169, and AlexNet. 

2.4. MLP regressor with bioimpedance 

We constructed a conventional MLP regressor to introduce trans-
thoracic bioimpedance to the ECG-DenseNet191-PCA or ECG-VGG19- 
PCA features. The regressor contained three dense layers, with di-
mensions of 128, 64 and 1 in sequence. The regressor had two purposes. 
First, the outcome of the model was used as the predicted bioimpedance 
for the test set. Second, all DenseNet121-PCA or VGG19-PCA features 
were processed through the model, and new features were extracted 
after the second dense layer for classification purposes. The new features 
had 64 dimensions and preserved both the ECG and bioimpedance 
information. 

2.5. Classifier training 

In our main approach, the features of DenseNet121-PCA or VGG19- 
PCA were concatenated with features extracted from the MLP regressor, 
and the combined features (ECGX-Net features) were classified by an 
SVM classifier. For the DenseNet121 and VGG19 combined features, the 
model consisted of a radial basis function (RBF) kernel, with optimum 
parameter values of gamma and C selected by grid search. The grid 
search also included linear and polynomial kernels. The optimum ker-
nels and parameters are shown in Supplementary Fig. 3C. 

We used the data from the participants and dates that contained 
existing bioimpedance records as the training set and the remaining data 
that did not contain bioimpedance records as the test set. The ECGs 
associated with bioimpedance values were used for training and vali-
dation (type 1, 229 samples), and the ECGs without bioimpedance 
values were used for testing (type 2, 212 samples). Therefore, the testing 
set was completely independent from the training set. For the bio-
impedance regression, we used the type 1 data as the training and 
validation set (random split with a 4:1 split ratio), and we used the type 
2 data as the test set. For SVM training, we utilized a grid-search process 
to optimize the parameters for the SVM classifier using the SVC function 
from the sklearn.svm module and the GridSearchCV function from 
sklearn.model_selection. The parameter search was conducted using 
type 1 data and five-fold cross-validation. The optimized classifier was 
then applied to the type 2 data for testing. The process was repeated 50 
times, with each repetition involving randomly selecting a 1:1 HF to N 
ratio from the type 1 data for training. The model's performance was 
evaluated by averaging the results of all 50 repetitions. 

2.6. Hyperparameter searching 

The hyperparameters of the bioimpedance MLP regressor are the 
numbers of dense layers and of the neurons of each layer for the MLP 
regressor. We tested ten different configurations of the MLP regressor. 
The numbers of hidden neurons in each configuration were set as 128 → 
64 → 1, 128 → 32 → 1, 128 → 16 → 1, 64 → 32 → 1, 64 → 16 → 1, 32 → 
16 → 1, 128 → 64 → 32 → 1, 128 → 64 → 16 → 1, 128 → 32 → 16 → 1, 
and 64 → 32 → 16 → 1. We used DenseNet121-PCA features as input, 
and the batch size was 64. With the optimum structure, we tested 
different optimizers such as Adam, Adadelta, Adagrad and RMSprop 
with the fixed learning rate 0.1, 0.01, 0.001 and 0.0001. The parameters 
were evaluated according to the classification performance using com-
bined features that involved regressor features from each configuration 
(Supplementary Fig. 3A–C). Based on this, we selected the MLP structure 
of 128 → 64 → 1, Adam optimizer with the fixed learning rate of 0.001, 
and the batch size of 64. 

The hyperparameters of the SVM classifier are the types of kernels 
and the kernel parameters. We carried out hyperparameter search for 
the SVM classifier among three kernels: linear, radial basis function 
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(RBF), and polynomial. We associated the SVC function from the sklearn. 
svm module with the GridSearchCV function from sklearn.model_selection. 
For the linear kernel, grid search was performed on the optimization 
parameter C (among 0.01, 0.1, 1, 10, 100, and 1000). For the RBF 
kernel, grid search was conducted on C (among 0.01, 0.1, 1, 10, 100, and 
1000) and the curvature parameter gamma for the decision boundary 
(among 0.0001, 0.001, 0.01, 0.1, 1). For the polynomial kernel, grid 
search was performed on the degree (1, 2, and 3), C (among 0.01, 0.1, 1, 
10, 100, and 1000), and gamma (0.0001, 0.001, 0.01, 0.1, and 1). We 
evaluated the classification performance by five-fold cross-validation 
using the F1-score to select the optimal parameters (Supplementary Fig. 
3D). 

2.7. Model performance analysis 

The model's performance and prediction robustness were evaluated 
by calculating the accuracy, recall, precision, F1-score, and AUC-PR 
(area under the precision-recall curve). The calculations were based 
on the data using MATLAB's predicted score perfcurve function. During 
visualization, the output AUC was interpolated from 0 to 1 with a 0.008 
interval. The Wilcoxon signed-rank test was used to compare the per-
formance results from our approach and those of the baseline classifiers. 

2.8. Model interpretability 

To explain the features' contributions in ECGX-Net, we used SHAP 
(Shapley Additive exPlanations) [38], which is based on Shapley values 
[39]. We used KernelSHAP (the KernelExplainer class in the SHAP Py-
thon package) to identify the features' contributions in the SVN classi-
fier. We calculated the summation of the loading values across the 
highest-contributing principal components to evaluate the importance 
of the output features of the pretrained model. Then, we used Deep 
SHAP (the GradientExplainer class in the SHAP Python package) for the 
DenseNet121 and VGG19 pretrained models. The SHAP classes were 
first initialized in the training set and then applied to the test set for 
feature interpretation. To save computational and memory resources, 
only the top 50 features associated with heart failure were used as the 
outputs of the pretrained models. We generated the SHAP values on the 
7th layer of VGG19 with a size of 56 × 56 and those on the 13th layer of 
DenseNet121 with a size of 56 × 56. We calculated the average SHAP 
values across all samples in the N and HF classes. 

3. Results 

3.1. An overview of the data and the ML pipeline 

The ECG recordings from the SENTINEL-HF study of Dovancescu 
et al. [31] were used as the main source of data in this study. The 
SENTINEL-HF study enrolled 180 patients who were previously hospi-
talized with ADHF. After the participants had recovered and were dis-
charged from the hospital, ECG and other measurements were recorded 
regularly by wearable devices. The participants were followed to 
determine clinical ‘events,’ such as visits to the Emergency Department, 
rehospitalizations, and medications used to treat ADHF, such as upti-
tration of diuretic therapy. The charts were adjudicated by physicians to 
determine whether the clinical events were due to worsening HF or 
other etiologies [40]. 

In the SENTINEL-HF study, the bioimpedance vest was designed to 
monitor the health condition of the participants during daily activities 
after hospital discharge. When participants wore the vest, four textile 
electrodes in the vest measured changes in bioimpedance, which reflects 
the intrathoracic fluid accumulation level. Additionally, the vest recor-
ded ECG signals in the form of a single-channel time series. Sample in-
dividuality, which presents as differences in ECG patterns, for example, 
the amplitudes and shapes of QRS intervals, was observed among 
different participants (Supplementary Fig. 1). The participants 

underwent routine/daily procedures with the instruments during the 
study. Each procedure produced one ECG time series approximately 5 
min in length; these collected time series were used as the raw dataset in 
this study. The raw dataset consists of 1318 unprocessed ECG time series 
from 37 participants. Each five-minute ECG time series contains 
approximately 250–350 heartbeats. The ECG amplitude ranges from 
− 2048 mV to +2048 mV. The large noise that exists at the beginnings of 
all the segments was likely caused by poor contact between the skin and 
ECG electrodes. 

Fig. 1A shows a schematic diagram of the worsening HF prediction 
procedure used in this paper. A peak detection algorithm was used to 
record S wave locations in MATLAB (MathWorks). At each S wave 
location in the ECG signal, subsegments with five consecutive heartbeats 
were extracted (Fig. 1B). The follow-up subsegments started consecu-
tively at one heartbeat after the start of the previous subsegment. During 
training set preparation, we visually inspected the ECG data and 
removed data containing artifacts (including large noise and missing/ 
extra parts). 

We randomly selected the ECG data from those participants who had 
experienced later HF or worsening HF indicators during the Dovancescu 
et al. study (including the follow-up period). For participants who were 
not rehospitalized or did not experience an HF event, we randomly 
selected data during the span of the Dovancescu et al. study. In this way, 
the labels were assigned based on the participants' health statuses at the 
end of the SENTINEL-HF study, and the ECG subsegments were cate-
gorized into two classes: 

- Class HF (rehospitalized, worsening ADHF): The data from partici-
pants who experienced an ongoing recurrent ADHF event and/or 
cardiac ischemic-related heart failure during the study.  

- Class N: The data from participants who were not rehospitalized or 
did not experience ADHF during the study and follow-up period, 
representing the normal group. 

Initially, we verified 1462 five raw heartbeat ECG subsegments 
(before the data filtering step; see the Method for details). The samples 
were selected from 18 of the volunteers. After data filtering (see Data 
filtering in the Results section for details), the data from the ADHF group 
contained 186 ECG subsegments (from four participants), and the 
normal data (N) contained 255 ECG subsegments (from four partici-
pants, Fig. 1C). 

Then, we transformed the ECG subsegments into 2-D gray-scaled 
images by applying the Gramian Angular Summation Field (GASF) al-
gorithm (Fig. 1D; see the Methods section for details). Because the 
lengths of the time series vary between samples, the difference in the 
length of a time series and the corresponding influence was eliminated 
by setting a uniform size parameter of 224 × 224 pixels during the GASF 
transformation. To conduct feature extraction, the resulting images were 
copied into each RGB channel of the ImageNet-pretrained DenseNet121 
or VGG19 models (Fig. 1E). This transfer learning approach has both 
high simplicity and proven high accuracy on the classification and 
segmentation of biomedical images [30,41–45]. Then, the dimension of 
the extracted pretrained model features was reduced by PCA. Next, we 
refined the ECG features by performing cross-modal feature learning by 
predicting the bioimpedance using the pretrained model features of ECG 
(Fig. 1F). The features extracted from the MLP-based regressor were 
then concatenated with the pretrained CNN-PCA features, followed by 
SVM classification using the ECG features for cross-modal learning. 

3.2. VGG19 features of image-based ECG signals 

We first used the VGG19 model in our pipeline to explore the dataset. 
The pretrained VGG19 model takes 2D images containing five heart-
beats of the ECG time series as input and produces features of these 
images as output. These features are extracted after the first fully con-
nected layer (FC1), which has a dimension of 4096. Then, principal 
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component analysis (PCA) was conducted to reduce the feature dimen-
sion from 4096 to 500 (Figs. 1E, 2A–B), thus emphasizing the most 
important features. 

We visualized the distribution of these VGG19-PCA features using t- 
distributed stochastic neighbor embedding (t-SNE) and uniform mani-
fold approximation and projection (UMAP) and found that instead of 
large clusters, separate small clusters that belonged to either Class HF or 
N appeared on the t-SNE (Fig. 2C, left) and UMAP (Fig. 2D, left) plots. 
However, each cluster of ECG signals also corresponded to individual 
participants (Fig. 2C–D, right). Even though these VGG19-PCA features 
were highly specific to individual participants, it was not clear whether 
those features were related to ADHF or were merely patient bias. 
Therefore, a data filtering step is necessary to select the samples that can 

be distinguished by ADHF-related features. 

3.3. Data filtering 

Fig. 2E shows a schematic diagram of our data filtering procedure. 
First, we divided the entire dataset into ECG of regular and irregular 
heartbeats. An irregular heart rate could be due to atrial fibrillation, 
which should be considered separately. We identified 386 samples (from 
7 participants) with irregular heart rates. In this way, we separated the 
data into two groups:  

- Irregular heartbeat data: The data that exhibit dramatic changes in 
heart rate (Fig. 2G, right). 

Fig. 1. The schematics of worsening heart failure detection with transfer learning: (A) flowchart of the pipeline; (B) schematic of raw ECG time series cropping; (C) 
distribution of data among Class HF and N after data filtering; (D) transformation of ECG time series into 2D images by GASF; (E) schematic structure of feature 
extraction using transfer learning models. (F) Cross-modal feature learning between ECG and bioimpedance. 
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Fig. 2. Features extracted by pretrained VGG19 and data filtering: (A) first two components of PCA on VGG19 features; (B) explained variance ratio (EVR) and 
cumulative EVR plots with the number of PCA components; (C–D) t-SNE (C) and UMAP (D) plots of VGG19-PCA features. Right of (C), (D): Each color represents 
individual participants; (E) tree diagram for data filtering (*: 1 participant contributed data to both irregular and regular data groups; ** 4 participants contributed 
data in the main cluster and the small clusters); (F) UMAP plot of the single-sided spectrum from Fast Fourier Transform (blue: regular data; red: irregular data); (G) 
heatmaps of interpolated ECG of regular and irregular data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.) 
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- Regular heartbeat data: The data that show a constant heart rate 
(Fig. 2G, left). 

To fully eliminate the effect of atrial fibrillation in the regular-data 
group, we separated the data in accordance with the source date and 
participant. If more than half of the data from a participant on a given 
day were labeled as irregular data, the rest of the data collected from this 
patient on the same day were also labeled as irregular data. Fig. 2F 
shows the distribution of data with regular and irregular heartbeats in a 
UMAP visualization of min-max normalized single-sided spectrum fea-
tures from the Fourier transform. 

Next, we selected the regular dataset and visualized its UMAP dis-
tribution to further filter the data (Fig. 3A–C). We performed K-means 
clustering to separate the data into 8 clusters (Fig. 3C), resulting in one 
large main cluster that contained 441 samples (from 8 participants) and 
7 small clusters that contained 635 samples (from 8 participants). The 
small clusters contained either one or two participants, and none of them 
were diverse enough to have data distributed evenly among the HF and 
N groups for robust classification. Due to this lack of available data, we 
filtered out the data in the small clusters and used only the data in the 
main cluster to build a classifier. Fig. 3D–F shows the UMAP visualiza-
tion of the features from the main cluster of the regular samples. There 
exists a clear boundary between Groups HF and N (Fig. 3D). Moreover, 
low and high bioimpedance values tend to be associated with HF and N, 
respectively, suggesting that the ECG features in the main clusters can 
reflect the pathophysiology of ADHF (Fig. 3F, where the gray dots 
represent the data for which a bioimpedance reading was not available). 

3.4. Cross-modal feature learning of ECG with transthoracic 
bioimpedance 

We performed cross-modal feature learning, where we trained the 
MLP regressor with DenseNet121-PCA or VGG19-PCA features as inputs 

and the bioimpedance data as outputs (Fig. 4A–B). We used the ECG 
features that had recorded bioimpedance readings (229 samples, 155 HF 
and 74 N) as the training and validation groups at a ratio of 0.8:0.2 and 
then predicted bioimpedance on the part of the DenseNet121-PCA or 
VGG19-PCA features with no recorded bioimpedance records (212 
samples, 31 HF and 181 N). As shown in Fig. 4B, there was a clear 
correlation between the actual and predicted values of bioimpedance 
after training with both the DenseNet121 and VGG19 pretrained 
models. The results demonstrate that ECG features from the main cluster 
in the regular dataset can be used to recognize the bioimpedance values, 
thereby allowing the detection of worsening heart failure associated 
with low bioimpedance. 

For the irregular ECG data, 89 bioimpedance recordings were 
available for the irregular data. However, approximately 69.7 % of the 
bioimpedance recordings were associated with a single participant in 
Group N (62 samples), and for the data in Group HF (27 samples), 14 
bioimpedance recordings were associated with a single participant. 
Because more subjects are needed to validate the feasibility of classifi-
cation for irregular data, we did not use the irregular ECG dataset for 
cross-modal training (Supplementary Fig. 2). 

3.5. Prediction of ADHF using a support vector machine 

The cross-modal features from the MLP regressor model were 
extracted after the second dense layer and were 64 dimensions in length. 
After we concatenated them with the DenseNet121-PCA or VGG19-PCA 
features (Fig. 1F) to obtain the features of ECGX-Net (the cross-modal 
pipeline that uses DenseNet121-PCA or VGG19-PCA feature extraction 
and MLP regression), we trained the support vector machine (SVM) 
classifier. We used the ECGX-Net features extracted from the data 
associated with bioimpedance records as the training set and the rest 
that did not contain bioimpedance records as the test set, thereby 
isolating the test set from the training set. We repeated the training 50 

Fig. 3. UMAP visualization of VGG19-PCA features for data filtering with the regular dataset: (A–C) The entire regular dataset with the class labels (A), participant 
labels (B), and cluster labels (C). (D–F) The main cluster in the regular dataset with the class labels (D), participant labels (E), and bioimpedance (the gray dots 
correspond with the data missing bioimpedance measurement). 
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Fig. 4. Training of transthoracic bioimpedance MLP regressor: (A) Training loss curve of bioimpedance MLP regressor (green: using DenseNet121 features; orange: 
using VGG19 features; dotted line: training loss; solid line: validation loss); (B) Actual and predicted bioimpedance values of R0 transthoracic bioimpedance on the 
validation set (green: DenseNet121, correlation = 0.68, p-value = 1.95 × 10− 7; green: VGG19, correlation = 0.66, p-value = 7.16 × 10− 7). (C–D) Precision-recall 
curves of (C) DenseNet121 (green: DenseNet121-PCA + bioimpedance regression features; blue: bioimpedance regression features; cyan: DenseNet121-PCA features) 
and (D) VGG19 (orange: VGG19-PCA + bioimpedance regression features; red: bioimpedance regression features; yellow: VGG19-PCA features); (E–H) DenseNet121 
SVM classification comparison. Performance (E) and confusion matrix (G) in high-precision classification (85 % HF estimate probability threshold). Performance (F) 
and confusion matrix (H) in high-recall classification (50 % HF estimate probability threshold). (I–L) VGG19 SVM classification comparison. Performance (I) and 
confusion matrix (K) in high-precision classification (85 % HF estimate probability threshold). Performance (J) and confusion matrix (L) in high-recall classification 
(35 % HF estimate probability threshold). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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times with random downsampling of the data to avoid class imbalance. 
To characterize the role of the ECG-bioimpedance cross-modal fea-

tures, we calculated the precision-recall (PR) curves of the models from 
DenseNet121 (Fig. 4C) and VGG19 (Fig. 4D). The mean area under the 
curve (AUC) of the PR curves with DenseNet121 was 0.9249 for ECGX- 
Net, 0.9169 for DenseNet121-PCA features, and 0.9086 for Regressor 
features. The AUC-PR with VGG19 was 0.8371 for ECGX-Net, 0.8323 for 
VGG19-PCA features, and 0.7842 for Regressor features. In the high- 
precision regions, where the precision is >0.9 with DenseNet121 and 
0.75 with VGG19, the PR curves of ECGX-Net are above those of the 
classifiers using only pretrained model features. However, in the high- 
recall regions, where the recall is >0.9 with DenseNet121 or VGG19, 
the PR curves of ECGX-Net are below those of the classifiers using only 
pretrained model features. This suggests that the ECG-bioimpedance 
cross-modal features can be beneficial for high-precision classification. 

Based on this finding, we built high-precision classifiers whose pre-
cision was >90 % with an 85 % threshold for HF (Fig. 4E and G, Sup-
plementary Fig. 4A–B, E–F, I–J). ECGX-Net with DenseNet121 
significantly outperformed DenseNet121 alone (see Supplemental In-
formation 1 for the statistical testing) by achieving 93.58 % precision, 
78.71 % recall, and 0.85 F1-score, whereas the sole DenseNet121 fea-
tures achieved 92.87 % precision, 72.32 % recall, and 0.81 F1-score. We 
also built high-recall classifiers whose recall was >95 % with a 50 % 
threshold for HF (Fig. 4F and H). ECGX-Net with DenseNet121 achieved 
74.59 % precision, 99.29 % recall, and 0.85 F1-score, whereas Dense-
Net121 features alone achieved 80.01 % precision, 98 % recall, and 0.88 
F1-score. When we used the VGG19 pretrained model, ECGX-Net 
exhibited similar behaviors even though its overall performance was 
lower than that of DenseNet121 (Fig. 4I–L, Supplementary Fig. 4C–D, 
G–H, K–L, Supplemental Information 1). Therefore, ECGX-Net is 
preferred when high-precision classification is necessary. On the other 
hand, DenseNet121 features alone without cross-modal training can be 
used if a high-recall classifier is desired. 

In heart failure detection, a high-recall classifier is typically 
preferred because false negative results can have severe consequences, 
potentially leading to a worsening of the condition and increased 
morbidity or mortality. However, if false positive results lead to un-
necessary further testing or treatment, then a high-precision classifier 
may be preferred. Therefore, even though the cross-modal features may 
not be necessary for simple HF screening purposes, the high-precision 
performance of ECGX-Net can be applied to downstream diagnosis 
stages or low-risk patients to ensure that fewer healthy individuals are 
subjected to unnecessary tests or treatments. 

3.6. Interpreting the model performance with SHAP values 

We used SHAP (Shapley Additive exPlanations) values [38] to assess 
the contribution and predictiveness of the features, uncovering the 
relationship between GASF-transformed ECG images and heart failure. 
The SHAP values can be used to evaluate the contributions of image 
patterns and bioimpedance regressor features in the classification pro-
cess. Our model consists of four key components, starting with deep 
feature extraction using a pretrained model such as DenseNet121 or 
VGG19, followed by PCA, then bioimpedance prediction using MLP, and 
ending with an SVM classifier (Fig. 5A). We calculated the SHAP values 
to reveal the importance of the input features in the prediction process 
for the SVM classifier, and then the SHAP values were backpropagated 
to the bioimpedance regressor. Then, the loading values from PCA were 
used to evaluate the importance of the deep features from the Dense-
Net121 or VGG19 pretrained models. By backpropagation through the 
model, we identified the ECG image regions contributing to the pre-
diction process. 

From the trained SVM classifier, we identified the top 20 features 
ranked by the SHAP mean absolute values. With DenseNet121, the top 
features included 14 Dense121-PC features obtained directly from 
DenseNet121 (denoted as PC in Fig. 5B) and 6 features from the 

bioimpedance regressor (denoted as Bio in Fig. 5B), meaning that the 
bioimpedance cross-modal features played a significant role in SVM 
classification. With VGG19, all top features were VGG19-PC features 
obtained directly from VGG19 (Fig. 5B), and none of the highly 
contributing features were from the bioimpedance regressor, meaning 
that the cross-modal features affected the SVM classification in a subtle 
way. 

Then, we utilized the loading values in PCA to quantify the contri-
butions of the features from DenseNet121 or VGG19 and visualized the 
SHAP values of the top 50 features (denoted as deep features in Fig. 5C). 
For example, VGG19 features 2552 and 551 and DenseNet121 features 
863 and 532 contributed significantly to the SHAP values. Then, we 
backpropagated these SHAP values to the DenseNet121 or VGG19 pre-
trained models to quantify the contribution of the regions of the trans-
formed ECG images and average them over the N or HF classes. Fig. 5D 
and Supplementary Fig. 5 demonstrate that high absolute SHAP values 
in our study exhibit grid patterns. This is due to the GASF-transformed 
ECG images (Fig. 1D) displaying grid patterns as a result of the tempo-
ral correlation between paired times of ECG signals. In these 2D SHAP 
plots, the off-diagonal regions correspond to temporal correlation be-
tween paired times of ECG signals, while the on-diagonal lines corre-
spond to time-domain contributions. Notably, we observe significantly 
more SHAP values in the off-diagonal regions compared to the on- 
diagonal SHAP values. The grid patterns in the SHAP 2D plot suggest 
that the temporal correlation between ECG pulses at different time 
points plays a more important role in heart failure classification 
compared to time-domain signals. Moreover, in both DenseNet121 and 
VGG19, the average SHAP images of each feature of DenseNet121 or 
VGG19 exhibit marked differences between the N and HF classes, con-
firming the effectiveness of the classification. Intriguingly, the SHAP 
values of some features (F867 and F789) of DenseNet121 are localized in 
specific time intervals, while most of the VGG19 SHAP values are 
distributed over the entire image. This suggests that DenseNet121's local 
feature contribution could be a more effective way to predict heart 
failure. In summary, we demonstrate that the pretrained models on the 
transformed ECG images obtained the meaningful features associated 
with the temporal correlation of ECG to predict heart failure. 

3.7. Roles of the pretrained model and image transformation in ECGX-Net 

To understand the roles of the image-based DenseNet121 or VGG19 
feature extraction in our pipeline, we replaced them with other pre-
trained models and the trained ECGX-Net with the 50 % threshold for 
HF. We found that DenseNet121 (Precision: 0.7459, Recall: 0.9929, F1- 
score: 0.85) significantly outperformed all the other considered pre-
trained models (Fig. 6A, Supplementary Fig. 6; see Supplementary In-
formation 1 for statistical testing). The second-best models were VGG16 
(Precision: 0.7248, Recall: 0.8961, F1-score: 0.80) and VGG19 (Preci-
sion: 0.7424, Recall: 0.8800, F1-score: 0.81). The other models, Den-
seNet169, ResNet50, ResNet101, and AlexNet, could not match the 
performance of DenseNet121. Additionally, the AUC-PR showed the 
same trend (Fig. 6B; DenseNet121: 0.925, VGG19: 0.837, VGG16: 0.815, 
DenseNet169: 0.803, ResNet101: 0.790, ResNet50: 0.610, AlexNet: 
0.553). These results suggest that DenseNet121, VGG16, and VGG19 
provide better features to the downstream analysis methods, resulting in 
a significant boost in performance compared to the other models. 

To compare the computational efficiency of the different pretrained 
models, we measured their training times (Supplementary Fig. 7). The 
time required to convert the entire GASF image dataset to the pretrained 
model features was similar for all the methods, with the exception of 
AlexNet. However, the time for PCA dimensional reduction varied due 
to differences in the output dimensions (VGG16/VGG19/AlexNet: 4096; 
ResNet50/ResNet101: 2048; DenseNet121: 1024; DenseNet169: 1664). 
In SVM classification using the combined features (pretrained model- 
PCA features + regressor features), VGG16, VGG19, and DenseNet121, 
which performed better with radial basis function (RBF) kernels, took 
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Fig. 5. Model interpretation using SHAP values. (A) Backpropagation of SHAP values through ECGX-Net. (B) SHAP values of top 20 features for the SVM classifier. 
(Left: DenseNet121. Right: VGG19). PC: principal component of the pretrained model features. Bio (orange): bioimpedance regressor features. (C) The top 50 deep 
features (pretrained model features) are based on the summation of PCA loading values from the SVM classifier and bioimpedance regressor (Left: DenseNet121. 
Right: VGG19). (D) Four deep features with the largest SHAP contributions on the GASF transformed ECG images in N and HF classes (Top: DenseNet121, Bot-
tom: VGG19). 
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longer than the remaining models, which showed optimal performance 
with a polynomial kernel. Overall, DenseNet121 had the third longest 
total time, and VGG19 had the longest time among the seven models. 

We also tested the importance of GASF image transformation in our 
pipeline by replacing it with the Markov Transition Field (MTF) or 
Recurrence Plot (RP) (see the Methods section for details). In Dense-
Net121 or VGG19-based ECGX-Net, the classification performance of 
GASF was substantially better than that of MTF and RP (Fig. 6C–D). In 
particular, the precision performance of GASF was much better than that 
of MTF and RP, which made their F1-scores and AUC-PR significantly 

greater. In contrast to MTF and RP, GASF provided a more interpretable 
encoding of ECG time series with the temporal relationship between 
different time points. Because these features make important contribu-
tions to the prediction of heart failure, as demonstrated in our model 
interpretation, GASF plays a vital role in our ECGX-Net. 

Finally, we tested a conventional 1D CNN for the prediction of heart 
failure. The 1D CNN model used a simple, one-layer design due to the 
limited data size, with a filter number of 64 and kernel size of 11. The 
model was trained for 128 epochs using binary cross-entropy as the loss 
function. As the loss curve suggests in Supplementary Fig. 8A, significant 

Fig. 6. Classification performance comparison among different pretrained models and image transformation methods: (A) classification performances with different 
pretrained models;(B) precision-recall curves of different pretrained models. (VGG16: 0.815; VGG19: 0.837; ResNet50: 0.610; ResNet101: 0.790; DenseNet121: 
0.925; DenseNet169: 0.803; AlexNet: 0.553 for AUC); (C) classification performances with different image transformation methods;(D) precision-recall curves of 
different image transformation methods (MTF + DenseNet121: 0.417; MTF + VGG19: 0.400; RP + DenseNet121: 0.269; RP + VGG19: 0.467 for AUC). 
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overfitting occurred during training because of the small amount of 
data. The average performance of the 50 repetitions is substantially 
lower than that of our pipeline, as shown in Supplementary Fig. 8B. 
Therefore, our transfer learning approach using ImageNet-trained pre-
trained models plays an essential role in our study. 

4. Discussion 

We demonstrated that our time-series cross-modal feature learning 
pipeline effectively classifies ECG data into important clinical conditions 
without detecting known abnormal ECG rhythms. We also implemented 
time series transfer learning based on transforming the ECG signals into 
image-based data. When it was used to screen for ADHF, our method 
achieved high accuracy using inputs that consist of 2D images trans-
formed from 1D time series, followed by cross-modal feature learning 
with transthoracic bioimpedance. In this study, we filtered out the 
irregular data group and small outlier clusters due to the limited data 
size or the unavailability of bioimpedance measurements. With 
increasing data size and bioimpedance measurements, we expect that 
our ECGX-Net will be applicable to a variety of patient clusters. 

Most deep learning studies in ECG analysis [20,21] have focused on 
detecting ADHF events in well-controlled clinical settings with proper 
multielectrode positioning, which makes it challenging to make timely 
predictions of ADHF. Here, we show the feasibility of predicting ADHF 
from a single-channel ECG recorded by patients at home, enabling 
timely alerts and interventions in the home or ambulatory clinic when 
patients experience the symptoms. From a clinical perspective, this 
methodology provides a potential solution and evaluation method 
outside of the inpatient setting using a portable health care device after 
discharge for an initial admission for HF. With proper, routine mea-
surement of ECG, patient status and risk can be assessed remotely while 
the patient remains at home rather than having to visit hospitals in 
person for frequent re-examinations and treatment adjustments. 

We demonstrated that ECGX-Net was particularly effective for high- 
precision classification, while the pretrained model features alone were 
sufficient for high-recall classification. Balancing precision and recall 
performance requires careful consideration of the costs involved in false 
positives and false negatives. For example, high-recall classifiers are 
preferred for a patient group with a high risk of heart failure to reduce 
patient morbidity and mortality. On the other hand, high-precision 
classifiers are preferred for low-risk patient groups to reduce unnec-
essary testing and treatment. Our pipeline allows precision and recall to 
be balanced to handle the unique requirements of different medical 
scenarios and resource limitations. The current study focuses on using 
our pipeline for small datasets; however, increasing the data size by 
recruiting more patients is necessary. The study did not include ECG 
data with irregular patterns due to a lack of participants (Fig. 2G). 
Increasing the sample size will help reduce bias and make the model 
more robust and sensitive in heart failure classification and prediction. 

Our cross-modal feature learning method using image-based transfer 
learning can achieve high-performance classification. We demonstrate 
that ImageNet pretrained with DenseNet121 and VGG19 can efficiently 
extract the GASF-based features of temporal dependencies between 
different time points with a small amount of data. This increases the 
feasibility of machine learning applications in the medical field, 
including the analysis of electroencephalogram (EEG) data for epilepsy 
detection [46] and electroretinogram (ERG) data for congenital sta-
tionary night blindness diagnosis [47] and the classification/clustering 
of dynamic cellular phenotypes [48,49]. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.artmed.2023.102548. 
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