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A B S T R A C T   

Dental pain invokes the sympathetic nervous system, which can be measured by electrodermal activity (EDA). In 
the dental clinic, accurate quantification of pain is needed because it could enable optimized drug-dose treat-
ments, thereby potentially reducing drug addiction. However, a confounding factor is that during pain there is 
also lingering residual stress, hence, both contribute to the EDA response. Therefore, we investigated whether 
EDA can differentiate stress from pain during dental examination. The use of electrical pulp test (EPT) is an ideal 
approach to tease out the dynamics of stress and mimic pain with lingering residual stress. Once the electrical 
sensation is felt and reaches a critical current threshold, the subject removes the probe from their tooth, hence, 
this stage of data represents largely EPT stimulus and the residual stress-induced EDA response is smaller. EPT 
was performed on necrotic and vital teeth in fifty-one subjects. We defined four different data groups of reactions 
based on each individual’s EPT intensity level expectation based on the visual analog scale (VAS) of their 
baseline trial, as follows: mild stress, mild stress + EPT, strong stress, and strong stress + EPT. EDA-derived 
features exhibited significant difference between residual lingering stress + EPT groups and stress groups. We 
obtained 84.6% accuracy with 76.2% sensitivity and 86.8% specificity with multilayer perceptron in differen-
tiating between pure-stress groups vs. stress + EPT groups. Moreover, EPT induced much greater EDA amplitude 
and faster response than stress. Our finding suggests that our machine learning approach can discriminate be-
tween stress and EPT stimulation in EDA signals.   

1. Introduction 

Dental treatments are time-sensitive so prompt diagnosis is of the 
utmost importance. However, dental stress can cause some patients to 
avoid timely diagnosis and dental care [1,2]. This is further emotionally 
ingrained as dental stress can lead to avoidance of dental visits, which 
can exacerbate dental problems, leading to more stressful dental treat-
ments [3,4]. Hence, unduly high stress can delay timely treatment when 
it can be most effective. A prior work has shown that the pain experi-
enced during treatment is significantly correlated with stress [5,6]. 
However, pain is currently assessed using subjective scales [4,5,7], 
which can be affected by biological, sociocultural, and psychological 
factors [8–10]. These can hamper accurate dental assessment for chil-
dren, the deaf, and others with communication issues. Thus, quantifying 
pain can lead to more effective treatment, and provide positive feedback 
to subjects and less stress towards the treatments, which can further lead 

to more acceptance of preventive and timely dental care. 
Recently, electrodermal activity (EDA) was shown to be a sensitive 

surrogate physiological marker for sympathetic arousal (e.g., pain, 
cognitive stress, and emotion) [11]. EDA measures the changes in 
electrical conductance of the skin modulated by the opening of the sweat 
glands, which are controlled by the sympathetic nervous system. 
Consequently, researchers have explored the use of EDA to detect and 
quantify various sympathetic stimuli with good results [12–17]. In our 
previous research, we have used features derived from EDA based on 
time signals and time-frequency analysis, as well as EDA’s differential 
features, for the assessment of pain elicited by heat and electrical 
stimuli. In this prior study we showed statistically significant differences 
for multi- and binary-levels of heat and electrical pain, and accurate pain 
assessment using machine-learning classifiers [12–15]. Other research 
groups have also successfully detected heat pain using EDA signals with 
deep learning approaches [16,17]. 
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Stress which is sensed at the amygdala can also elicit responses in 
EDA via the sympathetic nervous system [18–22]. Most pain studies 
consider stress as a confounding factor. There have been no research 
studies that have tried to differentiate stress from other sympathetic 
stimuli in EDA signals. Sugimine et al. showed that normalized skin 
conductance level (nSCL) which was developed to differentiate different 
heat pain can discriminate heat, mechanical, and cold pain from stress 
(e.g., audio and visual stimuli) in EDA signals [23,24]. However, the fact 
that pain and stress were not elicited to a subject at the same time limits 
their study as both stimuli affect to each other and to EDA signals [25]. 
Moreover, the experiment was conducted in well-controlled environ-
ment including 5–10 min of waiting time with closing the eyes and 20 s 
of pre-stimulus time with opening the eyes. Thus, their study precludes 
the aim to separate pain dynamics from other sympathetic stimulus 
causing stress. 

The aim of this work was to investigate whether or not we can 
differentiate between stress and pain perception during dental exami-
nation involving electrical pulp test (EPT). We chose EPT because 
placement of the EPT probe on a tooth induces stress without any 
sensation at first, followed by the actual electrical stimulus thereafter. 
The full effect of EPT stimulus is delayed because the current placed on 
the tooth is cumulative—after it reaches a certain threshold, the EPT 
sensation is felt. Hence, EPT sensation on a tooth is a delayed response. 
Thus, we hypothesize that EPT is a good model for measuring only 
stress, followed by the pain-mimicking sensation elicited by the elec-
trical stimulus, albeit with some residual lingering stress [26]. 

2. Methods 

2.1. Participants 

All studies involving human protocols were in accordance with 
guidelines of the Institutional Review Board of the University of Con-
necticut Health (IRB protocol 20-043-1). We recruited patients who had 
one tooth that required a root canal treatment and two nearby normal 
teeth. We excluded patients under the age of 18, pregnant women, those 
with profound anxiety (Corah’s dental anxiety scale ≥15, ranging 4–20) 
based on survey questions, having porcelain-crowned teeth, taking 
medications with anticholinergic side effects which can affect skin 
conductance, prior sympathectomy procedures, and those diagnosed 
with Raynaud’s syndrome. Twenty-seven females and twenty-four 
males, for a total of fifty-one patients (aged 35.78 ± 11.81) were 
recruited, with Corah’s anxiety levels of 7.04 ± 2.59. 

2.2. Stimuli and materials 

2.2.1. Electric pulp test (EPT) 
The electric pulp test (EPT) was used to test EDA using a Vitality 

Scanner 2006 (Kerr Dental, Orange, CA, USA). A conductance gel, 
toothpaste, was applied to the tip of the EPT probe. Patients were asked 
to hold the EPT probe to complete the circuit and start delivery of cur-
rent to a tooth and to release the EPT probe as soon as they felt sensation 
on the tooth. Mainkar and Kim reported in 2018 that sensitivity and 
specificity of testing non-vital and vital teeth using EPT are estimated to 
be 72% and 93%, respectively from their meta-analysis of 28 studies in 

Fig. 1. Representative PSDs of EDA signals with (a) stress and (b) stress + EPT (EPT result of 49/80).  

Fig. 2. Scheme of group segmentation. Baseline refers to the first EPT for each subject.  
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2018 [27]. Therefore, EPT is one of the standard clinical tests performed 
for pulp diagnosis. 

2.2.2. Electrodermal activity (EDA) 
EDA signals can be decomposed into two salient components, phasic 

(i.e., rapid change) and tonic (i.e., slow change) components [11]. The 
phasic component, defined as the skin conductance response (SCR), 
accounts for a rapid increase in EDA amplitude in response to activation 
of the sympathetic response to a stimulus [11,28]. The tonic component 
of EDA, known as skin conductance level (SCL), is a slower response 
than SCR [11]. As we aim to differentiate pain-mimicking stimuli from 
stress in EDA signals, we selected only the phasic component of EDA, as 
both stress and (especially) pain responses have faster dynamics than 
SCL. We also calculated time-frequency spectral analysis features as they 
have been shown to provide more sensitivity to the sympathetic activity 
(e.g., pain) than the phasic and tonic components of EDA [13,19,29]. 
Moreover, we computed the differential characteristic features derived 
from the phasic component of EDA, as they has been shown to be a good 
discriminant [13]. 

EDA was collected using a clinical-grade galvanic skin response de-
vice (GSR AMP, ADInstrument, Sydney, Australia) and an amplifier 
(PowerLab, ADInstrument, Sydney, Australia) from the index and mid-
dle fingers, using reusable stainless-steel electrodes. The EDA signals 
were collected at 1000 Hz using the LabChart 8 software (ADInstrument, 
Sydney, Australia). The collected data were resampled to 8 Hz, then 
passed through a median filter with 16 samples corresponding to 2 s, to 
remove motion artifacts in the EDA signals. The filtered signals were 
then resampled to 2 Hz for further processing of EDA features, including 
the power spectral density (PSD) of EDA signals [19], the phasic 
component of EDA (decomposed using cvxEDA and the derivative of the 
phasic signals (dPhEDA) [13]), the time-varying index of sympathetic 
activity (TVSymp), and modified TVSymp (MTVSymp) [13,29]. 

2.2.2.1. Power spectral density (PSD) of EDA signals. We hypothesize 
that pain perception induced by EPT has faster dynamics compared to 
stress. To investigate this, the power spectral density (PSD) was used to 

find the dominant frequency and its amplitude for both stress + EPT and 
stress only signals. We computed PSD using the Welch function in the 
SciPy library [30] for the filtered EDA, after detrending. The PSD of the 
EDA signal is the measure of power in the EDA signal with a function of 
frequency [31]. The PSD is a good analysis tool to compare if EDA sig-
nals between stress and stress + EPT have different amplitude and 
response speed. For example, a subject obtained 0.125 Hz with ampli-
tude 0.030 V2/Hz and 0.203 Hz with 0.039 V2/Hz for before and after 
the EPT on a vital tooth, respectively (EPT result 49/80, Fig. 1). 

2.2.2.2. Phasic component of EDA (PhEDA) and derivative of phasic sig-
nals (dPhEDA). We used cvxEDA to decompose phasic and tonic com-
ponents of EDA signals and to extract phasic driver [32]. We also 
calculated the derivative of the phasic signals (dPhEDA) as this accen-
tuates fast changes [13]. To calculate dPhEDA, we applied the five-point 
stencil central finite differences equation [33] as follows: 

dphEDAn =
pn− 2 − 8 • pn− 1 + 8 • pn+1 − pn+2

12 • (1/Fs)
(Eq. 1)  

where p and Fs represent a phasic component of EDA extracted using 
cvxEDA and the sampling frequency of 2 Hz, respectively. 

2.2.2.3. Time-varying index of sympathetic activity (TVSymp) and modi-
fied TVSymp. We also calculated TVSymp and MTVSymp, which have 
been shown to provide some of the highest sensitivities to sympathetic 
arousals including both pain and stress [13]. First, we applied a highpass 
filter at 0.01 Hz. The key part of TVSymp computation is to use a vari-
able frequency complex demodulation (VFCDM) approach next to 
extract frequency components in the 0.08–0.24 Hz range. VFCDM has 
been shown to exhibit one of the highest time and frequency spectral 
resolutions while maintaining accurate amplitude estimates. The third 
step of TVSymp computation is to estimate instantaneous amplitudes 
from the decomposed components so that a reconstruction of the signal 
of interest can be made. Following is a summary of the second and third 
steps of the TVSymp computational procedures from a previous 

Fig. 3. Comparison of normalized PhEDA. Varying colors denote different segments. Red dashed lines indicate averaged slopes. ‘D’, ‘A’, and ‘S’ represent duration, 
amplitude, and slope, respectively. Superscript indices indicate which groups show significant difference with that level (p < 0.05). 
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publication [29]. We define x(t) to be a narrow band oscillation with a 
center frequency f0, instantaneous A(t), phase φ(t), and the direct cur-
rent component dc(t), as follows: 

x(t)= dc(t) + A(t)cos(2πf0t+φ(t)). Eq. (2)  

By multiplying Eq. (2) by e− j2πf0 t, the instantaneous amplitude infor-
mation A(t) and phase information φ(t) can be extracted for a given 
center frequency, resulting in: 

z(t)= dc(t)e− j2πf0 t +
A(t)

2
ejφ(t) +

A(t)
2

e− j(4πf0 t+φ(t)). Eq. (3) 

The center frequency f0 then can move to zero frequency in the 
spectrum of z(t) by shifting e− j2πf0 t to the left. With an ideal low-pass 
filter (LPF) z(t) with a cutoff frequency fc < f0, the filtered signal zlp(t)
will contain only the component of interest as follows: 

zlp(t)=
A(t)

2
ejφ(t) (4)  

A(t)= 2
⃒
⃒zlp(t)

⃒
⃒ (5)  

φ(t)= arctan
(

imag
(
zlp(t)

)

real
(
zlp(t)

)

)

. (6) 

If the modulating frequency varies as a function of time, the signal x 
(t) can be expressed as follows: 

x(t)= dc(t) + A(t)

⎛

⎝
∫t

0

cos(2πf (τ)dτ+φ(t))

⎞

⎠ (7) 

Similar to Eqs. (2) and (3), both instantaneous amplitude, A(t), and 
instantaneous phase φ(t) can be produced by multiplying Eq. (7) by 

e− j
∫ t

0
2πf (τ)dτ as follows: 

z(t)= x(t)e− j
∫ t

0
2πf (τ)dτ

= dc(t)e− j
∫ t

0
2πf (τ)dτ

+
A(t)

2
ejφ(t) +

A(t)
2

e− j
∫ t

0
4πf (τ)dτ (8a) 

From Eq. (8), the filtered signal zlp(t) can be obtained with the same 

instantaneous amplitude A(t) and phase φ(t) as provided in Eqs. (5) and 
(6) by applying an ideal LPF to z(t) with a cutoff frequency fc < f0. The 
instantaneous frequency can be obtained as follows: 

f (t) = f0 +
1

2π
dφ(t)
dt

(8b) 

The 2 Hz EDA signal was used to obtain TVSymp in the previous 
publication [29], where VFCDM decomposed the signals with 2 Hz 
sampling frequency with the centered spectral frequencies consisting of 
0.04, 0.12, 0.20, 0.28, 0.36, 0.44, 0.52, 0.60, 0.68, 0.76, 0.84, and 0.92 
Hz. The second and third components were added to include the sym-
pathetic dynamics ranging between 0.045 and 0.25 Hz. The recon-
structed signal was normalized to unit variance. Instantaneous 
amplitudes of the summed value can be obtained using the Hilbert 
transform as follows: 

Y ′

(t)=
1
π p.v

∫ ∞

− ∞

X ′

(τ)
t − τ dτ (9)  

where p.v represents the Cauchy principal value. An analytic signal, Z 
(t), can be defined with the complex conjugate pair X* (t) and Y*(t), as 
follows: 

Z(t) =X ′

(t) + iY
′

(t)= a(t)ejθ(t) a(t)=
[
X′2(t) + Y ′2(t)

]1 /

2 θ(t)

= arctan(Y ′

(t) /X
′

(t))
(10) 

TVSymp a(t) is obtained with the instantaneous amplitude of Z(t). 
Finally, we calculated MTVSymp from TVSymp to emphasize EDA sig-
nals driven by sympathetic arousal and remove other baseline EDA re-
sponses from the prior segments. MTVSymp has shown higher 
sensitivity to detect pain in our previous publications [13,34]. 
MTVSymp was calculated as follows: 

MTVSympt =
{
at − μt, μt ≤ at

0, μt > at
, μt =

1
k • Fs

∑t− 1

i=t− 5•Frs

ai (11)  

where Fs represents the sampling frequency of 2 Hz. 

Table 1 
Comparison of EDA with statistic features (Mean ± Standard deviation).  

EDA Feature Baseline Group 1 Group 2 Group 3 Group 4 

PSD Dominant Freq. * 0.11 ± 0.06 0.13 ± 0.12 0.13 ± 0.05 0.13 ± 0.13 0.12 ± 0.05  
Amplitude 0.55 ± 2.03 0.08 ± 0.192,4 1.34 ± 3.691,3 0.20 ± 0.702,4 1.26 ± 3.821,3 

PhEDA Approx. Entropy 0.01 ± 0.052 0.00 ± 0.012,4 0.02 ± 0.08 B,1,3 0.01 ± 0.022 0.03 ± 0.081  

Max 2.80 ± 5.67 4.14 ± 16.192,4 7.30 ± 23.361,3 0.87 ± 1.262,4 2.77 ± 2.681,3  

Mean 2.24 ± 5.19 3.75 ± 15.872,4 6.52 ± 23.321,3 0.49 ± 0.812,4 1.92 ± 1.931,3  

Min 1.72 ± 4.53 3.38 ± 15.582 5.62 ± 23.131,3 0.27 ± 0.522,4 0.98 ± 1.403  

S.D. 0.33 ± 0.47 0.24 ± 0.572,4 0.53 ± 0.501,3 0.18 ± 0.252,4 0.57 ± 0.511,3 

dPhEDA Approx. Entropy 0.11 ± 0.112,3,4 0.07 ± 0.122,4 0.25 ± 0.13 B,1,3 0.05 ± 0.10 B,2,4 0.27 ± 0.13 B,1,3  

Max 0.33 ± 0.552,4 0.16 ± 0.332,4 0.79 ± 1.00 B,1,3 0.20 ± 0.402,4 0.85 ± 1.30 B,1,3  

Mean 0.01 ± 0.194 0.01 ± 0.204 0.02 ± 0.18 − 0.03 ± 0.084 0.07 ± 0.16 B,1,3  

Min − 0.24 ± 0.35 − 0.12 ± 0.202 − 0.49 ± 0.691,3 − 0.17 ± 0.262 − 0.41 ± 0.64  
S.D. 0.17 ± 0.241 0.08 ± 0.10 B,2,4 0.34 ± 0.45 B,1,3 0.10 ± 0.162,4 0.33 ± 0.451,3 

Ph. Driver Approx. Entropy 0.08 ± 0.112,4 0.05 ± 0.112,4 0.20 ± 0.14 B,1,3 0.06 ± 0.122,4 0.25 ± 0.21 B,1,3  

Max 4.61 ± 8.813 5.02 ± 17.152,4 11.45 ± 30.011,3 1.40 ± 2.47 B,2,4 6.91 ± 9.441,3  

Mean 1.71 ± 4.113 2.91 ± 12.462,4 5.10 ± 18.301,3 0.32 ± 0.55 B,2,4 1.63 ± 1.561,3  

Min 0.01 ± 0.05 1.26 ± 8.51 1.47 ± 7.19 6.77e-05 ± 2.27e-04 1.15e-04 ± 4.64e-04  
S.D. 1.21 ± 2.143 1.22 ± 3.912,4 2.92 ± 7.201,3 0.38 ± 0.63 B,2,4 1.82 ± 2.111,3 

TVSymp Approx. Entropy 0.01 ± 0.032 0.01 ± 0.032 0.05 ± 0.06 B,1,3 0.00 ± 0.012 0.05 ± 0.07  
Max 1.71 ± 1.311,3 1.04 ± 1.00 B,2,4 2.67 ± 1.301,3 1.02 ± 1.24 B,2,4 2.82 ± 1.921,3  

Mean 1.04 ± 0.941,3 0.59 ± 0.65 B,2,4 1.74 ± 0.911,3 0.49 ± 0.56 B,2,4 1.83 ± 1.221,3  

Min 0.47 ± 0.621,3 0.24 ± 0.37 B,2,4 0.62 ± 0.541,3 0.19 ± 0.23 B,2,4 0.87 ± 0.681,3  

S.D. 0.39 ± 0.34 0.24 ± 0.242,4 0.70 ± 0.351,3 0.25 ± 0.352,4 0.62 ± 0.471,3 

MTVSymp Approx. Entropy 0.04 ± 0.082 0.02 ± 0.052,4 0.09 ± 0.10 B,1,3 0.01 ± 0.042,4 0.10 ± 0.101,3  

Max 0.53 ± 0.51 0.31 ± 0.412,4 0.95 ± 0.601,3 0.34 ± 0.532,4 1.03 ± 0.851,3  

Mean 0.15 ± 0.18 0.09 ± 0.142,4 0.31 ± 0.251,3 0.08 ± 0.142,4 0.34 ± 0.301,3  

Min 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0  
S.D. 0.18 ± 0.18 0.10 ± 0.142,4 0.36 ± 0.251,3 0.11 ± 0.172,4 0.37 ± 0.321,3 

Superscript indices indicate which levels show significant difference with that level (p < 0.05). 
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2.3. Design and procedure 

Patients were examined in endodontic clinic at UConn Health. While 
patients were in a dental chair in the supine position, EDA electrodes 
were placed on the index and middle fingers. Patients were briefed about 
the EPT test procedure and encouraged to ask any questions they had. 
Patients were told to relax for 2-min baseline measurements, followed 
by EPT tests on a vital tooth and a necrotic tooth. The EPT scale (0–80) at 
the point when the patient released the probe was recorded for each test. 
After each EPT test, patients were asked to report their visual analogue 
scale (VAS) score on a scale from 0 to 10. A sham test was used on a vital 
tooth as there were twenty subjects without a necrotic tooth. Note that 
EPT on a necrotic tooth ideally causes only pure stress, as does the sham 

test. 
EPT delivers current while a probe was placed on a tooth and held by 

a patient. When current reaches a threshold of electrical sensation (i.e., 
EPT result 1–79/80) or the maximum value (i.e., EPT result 80/80) for 
the vital tooth and non-vital tooth, respectively. EPT causes pure stress 
regardless of a tooth condition, followed by an electrical stimulus with 
some residual stress for vital teeth. We segmented the data into four 
different categories with a baseline (Fig. 2). The baseline involves EPT 
data that were collected for each subject before an EPT stimulus was 
applied. As indicated earlier, most subjects have mild stress based on a 
survey of their anxiety levels (Corah’s anxiety levels of 7.04 ± 2.59). 
Hence, we considered this group to have mild stress. For each subject, 
the first EPT level highly influences the stress levels for the rest of the 

Fig. 4. (a) Dominant frequency and (b) its PSD. Labels for the x-axes represent 1) Baseline (mild stress), 2) mild stress 3) EPT sensation/mild stress 4) strong stress 
and 5) EPT sensation/strong stress. The numbers represent other groups from which that group is significantly different. Outliers were omitted, which were set if each 
datum is above Q1 − 1.5 × (Q3 − Q1) or below Q3 + 1.5 × (Q3 − Q1). Q1 and Q3 represent the first and third quartiles, respectively. 

Fig. 5. Boxplots of PhEDA. Labels for the x-axes represent 1) Baseline (mild stress), 2) mild stress 3) EPT sensation/mild stress 4) strong stress and 5) EPT sensation/ 
strong stress. The numbers and ‘B’ represent other groups from which that group is significantly different. Outliers were omitted, which were set if each datum is 
above Q1 − 1.5 × (Q3 − Q1) or below Q3 + 1.5 × (Q3 − Q1). Q1 and Q3 represent the first and third quartiles, respectively. 
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segments to be either mild or strong. We considered patients to have 
strong stress if the VAS obtained from the first EPT (elicited only on vital 
teeth) was 4 or greater (groups 3 and 4), while they are considered to 
have mild stress if VAS was less than 4 (groups 1 and 2). If the EPT 
induced a sensation (neither sham test nor necrotic tooth), we set EPT 
stimulus with mild stress to be group 2 and with strong stress + EPT to 
be group 4. Before the EPT induced a sensation, we set mild stress to be 
the baseline for the first EPT trial, and group 1 for the rest of trials, and 
strong stress to be the group 3. We took 10-s segments of EDA data for 
each group categorization. To summarize, baseline, groups 1 and 3 
correspond to when the EPT probe was on a tooth, while groups 2 and 4 
represent after the EPT probe was released (Fig. 2). Note that we 
consider that some degree of stress was always present during the 
experiments. 

2.4. Statistics and machine learning 

We calculated five statistical measures for each EDA feature (phEDA, 
dphEDA, phasic driver of EDA, TVSymp, MTVSymp) consisting of the 
approximate entropy, maximum, mean, minimum, and standard devi-
ation. The minimum of MTVSymp was discarded due to all zero values. 
Approximate entropy’s parameters of m and r are generally recom-
mended to be 2 and 0.2 times the standard deviation of the signal [35, 
36]. Thus, the parameters m and r were set to 2 and 0.2 multiplied by 
standard deviation of EDA data from a previously-collected dataset 
consisting of 10 subjects (five females and five males) undergoing pain 
(heat) and stress (the Stroop test) [37]. Kruskal-Wallis H test was used to 
compare EPT and stress segments, followed by Dunn’s test with Bon-
ferroni correction, as they were non-normally distributed. We used the 
Kolmogorov-Smirnov test to determine the normality of each group. A 

p-value <0.05 was considered statistically significant. 
We also examined machine learning algorithms to classify EPT 

stimuli from pure stress segments. The machine learning approaches 
consisted of support vector machine (SVM) with a linear kernel, logistic 
regression (LR), random forest (RF), and multi-layer perceptron (MLP), 
using Python 3.9 with the Sckit-learn library 0.24.2. We used leave-one- 
subject-out cross-validation to minimize the overfitting and procure 
subject independence of our results. For each fold, the following steps 
were conducted. First, SVM-Synthetic-Minority-Oversampling- 
Technique (SMOTE) was performed to make training datasets 
balanced [38]. Standardization was then done with zero mean and unit 
variance, except for random forest. Features were selected using the 
same classifiers based on feature importance greater than the average 
value of feature importance, except for MLP for which features were 
selected using Perceptron. Hyper parameters of the machine-learning 
algorithms were selected using grid-search-cross-validation with group 
five-fold cross-validation based on geometric mean score, as follows: 

Geometric mean score=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
sensitivity • specificity

√
(12) 

Parameter C for both SVM and LR was chosen from 0.01, 0.1, 1, 10, 
100, and 1000. For RF, four different depths (3, 4, 5, and 6) were tested 
to calculate feature importance with the Gini criterion. Finally, MLP was 
tested with three different number of hidden layers (1, 2, and 3), with 
100 hidden units, rectifier linear unit activation function, the Adam 
optimizer, and 0.001 learning rate. 

Fig. 6. Boxplots of dPhEDA. Labels for the x-axes represent 1) Baseline (mild stress), 2) mild stress 3) EPT sensation/mild stress 4) strong stress and 5) EPT sensation/ 
strong stress. The numbers and ‘B’ represent other groups from which that group is significantly different. Outliers were omitted, which were set if each datum is 
above Q1 − 1.5 × (Q3 − Q1) or below Q3 + 1.5 × (Q3 − Q1). Q1 and Q3 represent the first and third quartiles, respectively. 
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3. Results 

3.1. Normalized phasic component of EDA 

To compare between background stress and sensation elicited by 
EPT, we calculated normalized PhEDA signals during onset-to-peak time 
for all segments, adjusted to have zero amplitude at onset (Fig. 3). 
Duration of PhEDA responses for each group was similar among all 
groups, while their amplitudes and slopes showed significant differences 
between stress + EPT (groups 2 and 4) and stress groups (groups 1 and 
3). EPT with strong stress (group 4) exhibited a higher averaged slope 
than that with mild stress (group 2). Likewise, strong stress (group 3) 
showed a slightly higher average of amplitudes and slopes than mild 
stress (group 1). Baseline’s averaged amplitude was higher than stress 
groups (groups 1 and 3), likely because more anxiety was experienced 
by the subjects during the first trial. 

3.2. EDA features 

All EDA’s approximate entropy, max, mean, standard deviation 
features showed significant difference between stress and stress + EPT 
except for PSD (Table 1). Dominant frequency of PSD did not show 
significant difference between stress (groups 1 and 3) and stress + EPT 
groups (groups 2 and 4). Its stress groups had higher standard deviation 
than its stress + EPT groups. On the other hand, we observed a signifi-
cant difference between EPT (groups 2 and 4) and stress groups (groups 
1 and 3) for the amplitude of dominant frequency (Fig. 4). 

All statistical features of the phasic component of EDA (PhEDA) 
exhibited significant differences between EPT (groups 2 and 4) and 

stress groups (groups 1 and 3), except for the approximate entropy 
values between strong stress and EPT + strong stress, and the minimum 
values between mild stress and EPT + strong stress (Fig. 5). Group with 
EPT + strong stress (group 4) was distributed within greater values than 
were group with EPT + mild stress (group 2), although there their me-
dian values were similar. 

Approximate entropy, maximum, and standard deviation of dPhEDA 
showed significant differences between EPT (groups 2 and 4) and stress 
groups (groups 1 and 3), with higher median values of EPT groups 
(Fig. 6). Mean and minimum values of dPhEDA in EPT + mild stress 
group (group 2) were significantly different with groups 1 and 3, 
respectively. All statistical features of baseline’s dPhEDA except for 
minimum exhibited significant difference with at least one of the other 
groups. 

Except for the minimum values of the phasic driver of EDA, signifi-
cant differences were observed between EPT (groups 2 and 4) and stress 
groups (groups 1 and 3, Fig. 7). Also, maximum, mean, and standard 
deviation of baseline’s phasic drivers of EDA showed a significant dif-
ference with the strong stress group (group 3). Approximate entropy of 
baseline’s phasic driver showed significant difference with EPT groups 
(groups 2 and 4). Except for the minimum value and approximate en-
tropy of the phasic driver of EDA, EPT with strong stress (group 4) were 
distributed within greater values than were EPT with mild stress (group 
2), although their median values were similar (Fig. 7). 

TVSymp showed significant differences between EPT (groups 2 and 
4) and stress groups (groups 1 and 3, Fig. 8), except for approximate 
entropy. All statistical features of baseline’s TVSymp showed significant 
difference with at least one of the other groups, except for standard 
deviation. Approximate entropy showed significant difference between 

Fig. 7. Boxplots of Phasic Driver. Labels for the x-axes represent 1) Baseline (mild stress), 2) mild stress 3) EPT sensation/mild stress 4) strong stress and 5) EPT 
sensation/strong stress. The numbers and ‘B’ represent other groups from which that group is significantly different. Outliers were omitted, which were set if each 
datum is above Q1 − 1.5 × (Q3 − Q1) or below Q3 + 1.5 × (Q3 − Q1). Q1 and Q3 represent the first and third quartiles, respectively. 
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Fig. 8. Boxplots of TVSymp. Labels for the x-axes represent 1) Baseline (mild stress), 2) mild stress 3) EPT sensation/mild stress 4) strong stress and 5) EPT sensation/ 
strong stress. The numbers and ‘B’ represent other groups from which that group is significantly different. Outliers were omitted, which were set if each datum is 
above Q1 − 1.5 × (Q3 − Q1) or below Q3 + 1.5 × (Q3 − Q1). Q1 and Q3 represent the first and third quartiles, respectively. 

Fig. 9. Boxplots of MTVSymp. Labels for the x-axes represent 1) Baseline (mild stress), 2) mild stress 3) EPT sensation/mild stress 4) strong stress and 5) EPT 
sensation/strong stress. The numbers and ‘B’ represent other groups from which that group is significantly different. Outliers were omitted, which were set if each 
datum is above Q1 − 1.5 × (Q3 − Q1) or below Q3 + 1.5 × (Q3 − Q1). Q1 and Q3 represent the first and third quartiles, respectively. 
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EPT with mild stress (group 2) and stress and baseline groups. MTVSymp 
also showed significant differences between EPT and stress groups 
(Fig. 9). The minimum of MTVSymp was excluded in our analysis as it is 
expected to be zero for all groups. 

3.3. Machine learning 

We obtained more than 76% of accuracy of the four classifiers with 
target EPT (groups 2 and 4) vs. stress (groups 1 and 3), as shown in 
Table 2. MLP obtained the highest accuracy and geometric mean score of 
84.6% and 81.3%, respectively, with sensitivity of 76.2% and specificity 
of 86.8%. Random forest obtained a higher specificity than the other 
classifiers, with 88.7%, but lower sensitivities with 64.3%, respectively. 
With including baseline into stress group, our overall accuracy was 
slightly lower. 

4. Discussion 

We examined if EDA signals consisting of stress only and lingering 
stress + EPT can be accurately classified using features derived from 
EDA via machine learning. Our results showed that stress only and 
lingering stress + EPT can be distinguished using EDA features. All EDA 
features presented in the paper showed significant difference between 
stress (groups 1 and 3) and lingering stress + EPT groups (groups 2 and 
4). Although no significant difference was observed between low and 
high stress groups, all of our features showed values that were distrib-
uted in a higher number range for the strong stress + EPT group than for 
the mild stress + EPT group. Interestingly, all EDA features for the 
baseline group (i.e., mild stress with the first trial for each subject) 
exhibited higher amplitude than other stress groups, and those differ-
ences were significant in several cases. This suggests that it could be 
possible to reduce outliers by inducing some trials before dental pro-
cedures when using EDA signals for pain or stress quantification. This is 
potentially due to learning effect as patients become more comfortable 
and less stressed due to familiarity with the experiments. With the 
selected features derived from EDA from various techniques, we ob-
tained up to 84.6% accuracy with 76.2% sensitivity and 86.8% speci-
ficity with machine-learning techniques. 

Previously, we have shown that features developed in our lab (e.g., 
dPhEDA, TVSymp, and MTVSymp) are highly sensitive to sympathetic 
stimuli elicited by cognitive stress, heat and electrical pain. Our new 
findings show that these features are also feasible for distinguishing 
lingering stress + EPT from stress only. Moreover, other traditional 
features such as phasic EDA and phasic driver of EDA also showed sig-
nificant difference between EPT and lingering stress + EPT. The features 
developed in our lab all showed similarly consistent difference between 
mild stress and higher stress, while the traditional features (e.g., phasic 
EDA and phasic driver of EDA) showed inconsistent results. This sug-
gests that features developed in our lab provide more consistent and 
accurate results in differentiating between those with stress versus stress 
and pain. 

It has been shown that both sensation and anticipation of pain 
involve the same brain regions (e.g., anterior cingulate cortex, thalamus, 
and insular cortex) [39,40]. Both pain sensation and stress responses 
activate sympathetic outflows, which cause changes in skin blood flow 
and skin conductance responses [39]. Hence, given that both stress and 
pain sensation involve the same brain region, it is difficult to differen-
tiate them. However, our results show that sympathetic skin response 
was stronger and exhibited faster dynamics during pain sensations 
induced by EPT (i.e., EPT + stress) than during the anticipation stage 
which, as noted, was prior to EPT inducing sufficient current to induce 
pain sensation (i.e., stress only). This type of behavior was also shown in 
a study in which heat pain induced in the volar forearm significantly 
increased EDA response, more so than did its anticipation [39]. Hence, 
EPT is a good model to induce both stress and pain sensation, as the 
beginning stage of EPT does not induce a noxious stimulus due to a delay 
in reaching the threshold current. Instead, stress is induced by antici-
pation followed by pain sensation when the required threshold of the 
current is reached with EPT. Our findings with EPT suggest that pulpal 
diagnosis using EDA can be accurately made whether stress is presented. 

Despite our promising results, there are some limitations that need to 
be addressed in future studies. First, we did not consider low VAS (VAS 
<4), to minimize confounding factors in the study, as it might be 
ambiguous to define low VAS to be either EPT or other types of 
discomfort caused by purely anxiety and/or stress sensation. Also, we 
only recruited patients whose Corah’s anxiety scale was less than 15, to 
exclude patients who could possibly experience other emotions than 
stress, such as fear. In future studies, more emotions, such as fear, should 
be considered. Moreover, EDA signals may vary depending on gender, 
sex, ethnicity, race, genetic background, and type of EDA device [37, 
41–43]. These factors should be considered in future studies. Another 
concern is that we evoked electrical sensation and stress using EPT but 
not actual dental pain, which may cause different effects and perceived 
pain. Further variations involving actual dental pain must be studied in 
the future. 

5. Conclusions 

We compared EDA features between stress and lingering stress +
EPT. Our EDA features showed significant difference between stress and 
lingering stress + EPT segments. We found that the main differentiating 
observation between EPT and stress is that the former induced greater 
amplitude and faster response in EDA than the latter. Machine learning 
algorithms trained with a set of statistical features obtained from our 
EDA signal processing tools were able to discriminate lingering stress +
EPT from only stress events with high accuracy, sensitivity and speci-
ficity. Our finding provides an approach based on EPT to discriminate 
between stress and pain with some degree of confidence. Hence, EPT is a 
good procedure to discriminate between pain and stress sensation via 
EDA. 

Table 2 
Classification results (EPT + stress vs. pure stress).   

Baseline + Groups 1-4 Groups 1-4 

Acc. (%) Sen. (%) Spe. (%) G1 (%) Acc. (%) Sen. (%) Spe. (%) G1 (%) 

LR 78.8 64.3 82.0 72.6 82.1 66.7 86.2 75.8 
SVML 77.5 69.0 79.4 74.0 76.6 66.7 79.2 72.7 
RF 80.5 52.4 86.6 67.4 83.6 64.3 88.7 75.5 
MLP 81.8 64.3 85.6 74.2 84.6 76.2 86.8 81.3 

Baseline + Groups 1–4 (MLP, G1 = 74.2%) Groups 1–4 (MLP G1 = 81.3%)   
Predicted     Predicted    
Stress Stress + EPT    Stress Stress + EPT 

True Stress 85.6% (166) 14.4% (28)  True Stress 86.7% (138) 13.3% (21)  
Stress + EPT 35.7% (15) 64.3% (27)   Stress + EPT 23.8% (10) 76.2% (32)  

Y. Kong et al.                                                                                                                                                                                                                                    



Computers in Biology and Medicine 155 (2023) 106695

10

Declaration of competing interest 

None. 

Acknowledgements 

This research was funded by National Institute of Health (NIH/ 
NIDCR) DE029563 to IP.C. and K.C. 

References 

[1] A.M. White, L. Giblin, L.D. Boyd, The prevalence of dental anxiety in dental 
practice settings, Am Dental Hygien. Assoc. 91 (2017) 30–34. 

[2] B.O. Gaffar, A.S. Alagl, A.A. Al-Ansari, The prevalence, causes, and relativity of 
dental anxiety in adult patients to irregular dental visits, Saudi Med. J. 35 (2014) 
598–603. 

[3] A.J. Van Wijk, J. Hoogstraten, Anxiety and pain during dental injections, J. Dent. 
37 (2009) 700–704. 

[4] S. Sanikop, P. Agrawal, S. Patil, Relationship between dental anxiety and pain 
perception during scaling, J. Oral Sci. 53 (2011) 341–348. 

[5] S.K. Mp, Relationship between dental anxiety and pain experience during dental 
extractions, Asian J. Pharmaceut. Clin. Res. (2017) 458–461. 

[6] K. Okawa, T. Ichinohe, Y. Kaneko, Anxiety may enhance pain during dental 
treatment, Bull. Tokyo Dent. Coll. 46 (2005) 51–58. 

[7] B. Wondimu, G. Dahllof, Attitudes of Swedish dentists to pain and pain 
management during dental treatment of children and adolescents, Eur. J. Paediatr. 
Dent. 6 (2005) 66. 

[8] L.C. Callister, Cultural influences on pain perceptions and behaviors, Home Health 
Care Manag. Pract. 15 (2003) 207–211. 

[9] I. Kvachadze, M.G. Tsagareli, Z. Dumbadze, An Overview of Ethnic and Gender 
Differences in Pain Sensation, Georgian Medical News, 2015, pp. 102–108. 

[10] K.M. Woodrow, G.D. Friedman, A.B. Siegelaub, M.F. Collen, Pain tolerance: 
differences according to age, sex and race, Psychosom. Med. 34 (1972) 548–556. 

[11] H.F. Posada-Quintero, K.H. Chon, Innovations in electrodermal activity data 
collection and signal processing: a systematic review, Sensors 20 (2020) 479. 

[12] H.F. Posada-Quintero, Y. Kong, K. Nguyen, C. Tran, L. Beardslee, L. Chen, T. Guo, 
X. Cong, B. Feng, K.H. Chon, Using electrodermal activity to validate multilevel 
pain stimulation in healthy volunteers evoked by thermal grills, Am. J. Physiol. 
Regul. Integr. Comp. Physiol. 319 (2020) R366. –R375. 

[13] Y. Kong, H. Posada-Quintero, K. Chon, Sensitive Physiological Indices of Pain 
Based on Differential Characteristics of Electrodermal Activity, IEEE Transactions 
on Bio-Medical Engineering, 2021. 

[14] Y. Kong, H.F. Posada-Quintero, K.H. Chon, Real-time high-level acute pain 
detection using a smartphone and a wrist-worn electrodermal activity sensor, 
Sensors 21 (2021) 3956. 

[15] H.F. Posada-Quintero, Y. Kong, K.H. Chon, Objective pain stimulation intensity and 
pain sensation assessment using machine learning classification and regression 
based on electrodermal activity, Am. J. Physiol. Regul. Integr. Comp. Physiol. 321 
(2) (2021) R186–R196. 

[16] S.A.H. Aqajari, R. Cao, E.K. Naeini, M.-D. Calderon, K. Zheng, N. Dutt, P. Liljeberg, 
S. Salanterä, A.M. Nelson, A.M. Rahmani, Pain assessment tool with electrodermal 
activity for postoperative patients: method validation study, JMIR MHealth and 
UHealth 9 (2021), e25258. 

[17] D. Lopez-Martinez, R. Picard, Continuous pain intensity estimation from 
autonomic signals with recurrent neural networks, 2018, in: 40th Annual 
International Conference of the IEEE Engineering in Medicine and Biology Society 
(EMBC), IEEE, 2018, pp. 5624–5627. 

[18] M. Svetlak, P. Bob, M. Cernik, M. Kukleta, Electrodermal complexity during the 
Stroop colour word test, Auton. Neurosci. 152 (2010) 101–107. 

[19] H.F. Posada-Quintero, J.P. Florian, A.D. Orjuela-Cañón, T. Aljama-Corrales, 
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